Final Review

Perceptron

- Linear classifier: decision boundary w x + b = 0
- Update on misclassified sample:

$$w \leftarrow w + yx$$
$$b \leftarrow b + y$$

- Convergence iff data is linearly separable
- Limitations:
 - cannot solve XOR;
 - non-differentiable step activation

Neural Networks

- MLP: input → hidden (nonlinear) → output
- Activation functions
- Backprop: chain rule for gradients;

CNN

- Convolution:
 - parameter sharing;
 - output size via (kernel, stride, padding)
- Pooling: reduces spatial size; **no** learnable params

DL Recipe

- Early Stopping: stop when no improvement
- Activation Functions:
 - Sigmoid: vanishing gradients
 - ReLU: sparse activations, mitigates vanishing gradients
 - Leaky/Parametric ReLU: fix "dying ReLU"

Regularization:

- L2/Weight decay
- L1: sparsity;

Adaptive Optimizers:

- Adagrad, RMSprop, Adam
- Dropout:
 - Train: random drop per mini-batch; implicit ensemble effect
 - Test: scale by 1-p (or use inverted dropout during training)

Unsupervised learnig

- K-means Clustering
 - Goal: Partition n data points into k clusters
 - Limitations:
 - Sensitive to initialization.
 - Number of clusters k must be chosen in advance.
- Discriminative vs. Generative
 - Note not all generative models are unsupervised!

GAN

- Two-player game: Generator ${\cal G}(z)$ vs Discriminator ${\cal D}(x)$
- Objective (original): $\min_G \max_D \mathbb{E}[\log D(x)] + \mathbb{E}[\log(1 D(G(z)))]$
- Optimal $D^*(x) = \frac{p_{\text{data}}}{p_{\text{data}} + p_G}$; minimizes JS divergence

Autoencoders

- Encoder $x \to z$, Decoder $z \to \hat{x}$; minimize reconstruction loss (MSE / CE)
- Undercomplete AE: compression → feature learning
- AE vs. DAE vs. VAE

Transformers

- Attention mechanism
- Seq2Seq Model
- Encoder-Decoder Architecture

Checklist

- Know core formulas (perceptron update, conv shape)
- Be able to compare AE/VAE/GAN with one sentence each
- Practice at least one manual step for: backprop sign, conv shape, perceptron update

Likely Exam Prompts

- Compute one perceptron update on a given misclassified point
- Do CNN output shape and parameter count
- Write GAN minimax objective; explain why gradients reach G
- Etc.