Autoencoder

Notations

X One data sample from the dataset, x € D.

x/ The reconstructed version of x.

X The corrupted version of x.

Z The compressed code learned in the bottleneck layer.

a The activation function for the j-th neuron in the [-th hidden layer.

g¢(.) The encoding function parameterized by ¢.
fo(.) The decoding function parameterized by 6.
g4(z|x) Estimated posterior probability function, also known as probabilistic encoder.

Likelihood of generating true data sample given the latent code, also known as
probabilistic decoder.

Autoencoder

Large files

* When we have large files, we
often compress them to save
space. Later, we decompress
them when we need the original
contents.

-y

N\

Step

Compress

Store zipped

Decompress

File System
Analogy

ZIP the file
Keep only .zip file

Unzip back to
original

High-dimensional data

* Many datasets (e.g., images, audio, text) are:
* High-dimensional: e.g., a 128x128 RGB image = 49,152 features
* Redundant: nearby pixels or time steps often carry similar information

* Noisy: contain uninformative or irrelevant variations (e.g., lighting,
background)

‘ * Compressing helps focus on what really matters.

\
N\

G

Representation Learning

* |n autoencoders:
* The encoder transforms input x into a lower-dimensional latent code z
* The goal is to preserve important information, not just reduce size

* This process is not arbitrary:

‘ * The encoder learns to discard irrelevant variations
e |t extracts the most informative and useful features to reconstruct x

N

What Happens During Compression
(Encoder)

* We learn a function 9¢ which maps

reRP — 2eR? withd< D

* This transformation:
* Reduces dimension
* Filters out noise
* Forces the model to find structure in the data

Why it this useful?

* Dimensionality Reduction
* Visualize data (e.g., 2D t-SNE)
 Make downstream models faster and simpler

* Feature Extraction
* Latent code z can be reused for classification, clustering, etc.

e Robustness

* Small, informative codes resist overfitting
\Encourages generalization

G

Latent Code Alone Is Not Enough

* After the encoder compresses the input x into a latent
representation z, we want to:

* Check whether this code really captures the important parts of the
original input
* Reconstruct the input data to verify information retention

* A decoder gives the latent code a “reality check” — can we get
‘ back what we started with?

\
N\

What Does the Decoder Actually Do?

e The decoder is a learned function:
fo(z) — '

* [ttries to map the compact latent vector z back to the original data
space, reconstructing as accurately as possible:

r ~r

* This trains the encoder to:
* Learn compressions that are reversible
* Avoid trivial or lossy encodings

Analogy

Step

Compress
Store zipped

Decompress

File System Analogy

ZIP the file

Keep only .zip file

Unzip back to original

Autoencoder Analogy

Encoder maps inputx->
latent z

Store the compact latent
features

Decoder reconstructs
\hat{x} from z

Architecture

Reconstructed
mput < Ideally they are identical. ------------------ > input
X ~ x'
Bottleneck!
Encoder Decoder
X x/
9¢ fo

An compressed low dimensional
representation of the input.

Objective function

* We want to recover x’ as much as possible, that is minimize the
difference between x’ and x

/
|z — ']
* There are various metrics to quantify the difference between two

vectors, such as cross entropy when the activation function is
sigmoid, or as simple as MSE loss:

Las(6,6) = = 3 — folgo(x)

Denoising Autoencoder (DAE)

Limitations of AE

* Trivial Identity Mapping

* |[f the encoder and decoder have too much capacity, the network might
simply learn to copy the input to the output without extracting useful
structure.

* Especially true when the latent dimension is large or the model is
overparameterized.

‘ Sensitive to Noise

* Asmall perturbation in the input can lead to a large difference in the
\ reconstruction.

\The model doesn’t learn robustness by default.
-

Coreidea N\

* |[f the model learns to recover
the original input from a
corrupted version, it must
have captured deeper
structure in the data

* We will corrupt the input (add
noise)

T — I

Types of Noise in DAE

* Gaussian noise:X=x+¢
* Masking noise: randomly zero out features
* Salt-and-pepper noise: random 0/1 flips

Architecture

Original
input

E 0000000 x

Partially
destroyed
input

Input

OROOXXO |*

Encoder

9¢

Ideally they are identical.

X~ X

Bottleneck!

. Decoder

An compressed low dimensional
representation of the input.

fo

Reconstructed
input

Objective function

 Similar to AE, we can use MSE as the loss function

Lpar(6, ¢) = Z(X — fo(gs(x'")))?

Variational Autoencoder

Coreidea

* Latent space becomes probabilistic
* Instead of mapping input x to a point z, we map to a distribution

¢ (2 | x)
typically a Gaussian.

 Add a prior over latent space
* Encourage all latent codes to stay close to a prior

p(z) — N((}:I)

* sowe can sample from it at test time.

Architecture

Reconstructed
input

Input «----------------ooo o Ideally they are identical. ~ ----------------------
X~ x
Probabilistic Encoder
q¢(2|x)
K latent vector
Probabilistic
X > ' »| Decoder
po(x|z)
(02
Std. dev

B An compressed low dimensional
Z=p+oOE representation of the input.

e ~N(0,I)

Comparison: AE vs. DAE vs. VAE

* AE: deterministic, no noise, not generative
* DAE: robust to input noise, still deterministic
* VAE: probabilistic, structured latent space, generative

GAN vs. VAE

Generator

G(z)

Discriminator

GAN: Adversarial /
X —
D(x)

training

Decoder
po(x|z)

Encoder

VAE: maximize X |—
g4 (z|x)

variational lower bound

	Default Section
	Slide 1: Autoencoder
	Slide 2: Notations
	Slide 3: Autoencoder
	Slide 4: Large files
	Slide 5: High-dimensional data
	Slide 6: Representation Learning
	Slide 7: What Happens During Compression (Encoder)
	Slide 8: Why it this useful?
	Slide 9: Latent Code Alone Is Not Enough
	Slide 10: What Does the Decoder Actually Do?
	Slide 11: Analogy
	Slide 12: Architecture
	Slide 13: Objective function
	Slide 14: Denoising Autoencoder (DAE)
	Slide 15: Limitations of AE
	Slide 16: Core idea
	Slide 17: Types of Noise in DAE
	Slide 18: Architecture
	Slide 19: Objective function
	Slide 20: Variational Autoencoder
	Slide 21: Core idea
	Slide 22: Architecture
	Slide 23: Comparison: AE vs. DAE vs. VAE
	Slide 24: GAN vs. VAE

