Autoencoder

Notations

x	One data sample from the dataset, $\mathbf{x} \in \mathcal{D}$.
\mathbf{x}'	The reconstructed version of \mathbf{x} .
$ ilde{\mathbf{x}}$	The corrupted version of \mathbf{x} .
${f z}$	The compressed code learned in the bottleneck layer.
$a_j^{(l)}$	The activation function for the \emph{j} -th neuron in the \emph{l} -th hidden layer.
$g_\phi(.)$	The encoding function parameterized by ϕ .
$f_{ heta}(.)$	The decoding function parameterized by $ heta$.
$q_{\phi}(\mathbf{z} \mathbf{x})$	Estimated posterior probability function, also known as probabilistic encoder .
$p_{ heta}(\mathbf{x} \mathbf{z})$	Likelihood of generating true data sample given the latent code, also known as probabilistic decoder .

Autoencoder

Large files

 When we have large files, we often compress them to save space. Later, we decompress them when we need the original contents.

Step	File System Analogy	
Compress	ZIP the file	
Store zipped	Keep only .zip file	
Decompress	Unzip back to original	

High-dimensional data

- Many datasets (e.g., images, audio, text) are:
 - **High-dimensional**: e.g., a 128×128 RGB image = 49,152 features
 - Redundant: nearby pixels or time steps often carry similar information
 - Noisy: contain uninformative or irrelevant variations (e.g., lighting, background)
- Compressing helps focus on what really matters.

Representation Learning

- In autoencoders:
 - The **encoder** transforms input x into a **lower-dimensional latent code** z
 - The goal is to preserve important information, not just reduce size

- This process is not arbitrary:
 - The encoder learns to discard irrelevant variations
 - It extracts the most informative and useful features to reconstruct x

What Happens During Compression (Encoder)

ullet We learn a function g_ϕ which maps

$$x \in \mathbb{R}^D \longrightarrow z \in \mathbb{R}^d \text{ with } d \ll D$$

- This transformation:
 - Reduces dimension
 - Filters out noise
 - Forces the model to find structure in the data

Why it this useful?

Dimensionality Reduction

- Visualize data (e.g., 2D t-SNE)
- Make downstream models faster and simpler

Feature Extraction

• Latent code z can be reused for classification, clustering, etc.

Robustness

- Small, informative codes resist overfitting
- Encourages generalization

Latent Code Alone Is Not Enough

- After the encoder compresses the input x into a latent representation z, we want to:
 - Check whether this code really captures the important parts of the original input
 - Reconstruct the input data to verify information retention
- A decoder gives the latent code a "reality check" can we get back what we started with?

What Does the Decoder Actually Do?

The decoder is a learned function:

$$f_{\theta}(z) \to x'$$

• It tries to map the compact latent vector z back to the original data space, reconstructing as accurately as possible:

$$x' \approx x$$

- This trains the encoder to:
 - Learn compressions that are reversible
 - Avoid trivial or lossy encodings

Analogy

Step	File System Analogy	Autoencoder Analogy
Compress	ZIP the file	Encoder maps input x → latent z
Store zipped	Keep only .zip file	Store the compact latent features
Decompress	Unzip back to original	Decoder reconstructs \hat{x} from z

Architecture

Objective function

 We want to recover x' as much as possible, that is minimize the difference between x' and x

$$||x-x'||$$

 There are various metrics to quantify the difference between two vectors, such as cross entropy when the activation function is sigmoid, or as simple as MSE loss:

$$L_{ ext{AE}}(heta,\phi) = rac{1}{n} \sum_{i=1}^n (\mathbf{x}^{(i)} - f_ heta(g_\phi(\mathbf{x}^{(i)})))^2$$

Denoising Autoencoder (DAE)

Limitations of AE

Trivial Identity Mapping

- If the **encoder and decoder have too much capacity**, the network might simply learn to **copy** the input to the output without extracting useful structure.
- Especially true when the latent dimension is large or the model is overparameterized.

Sensitive to Noise

- A small perturbation in the input can lead to a large difference in the reconstruction.
- The model doesn't learn robustness by default.

Core idea

 If the model learns to recover the original input from a corrupted version, it must have captured deeper structure in the data

 We will corrupt the input (add noise)

$$x \to \tilde{x}$$

Types of Noise in DAE

- Gaussian noise: $\tilde{x} = x + \epsilon$
- Masking noise: randomly zero out features
- Salt-and-pepper noise: random 0/1 flips

Architecture

Objective function

• Similar to AE, we can use MSE as the loss function

$$L_{ ext{DAE}}(heta,\phi) = rac{1}{n} \sum_{i=1}^n (\mathbf{x}^{(i)} - f_ heta(g_\phi(ilde{\mathbf{x}}^{(i)})))^2$$

Variational Autoencoder

Core idea

- Latent space becomes probabilistic
 - Instead of mapping input x to a point z, we map to a distribution

$$q_{\phi}(\mathbf{z} \mid \mathbf{x})$$

typically a Gaussian.

- Add a prior over latent space
 - Encourage all latent codes to stay close to a prior

$$p(\mathbf{z}) = \mathcal{N}(0, I)$$

• so we can **sample** from it at test time.

Architecture

Comparison: AE vs. DAE vs. VAE

- AE: deterministic, no noise, not generative
- DAE: robust to input noise, still deterministic
- VAE: probabilistic, structured latent space, generative

GAN vs. VAE

