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Large files

• When we have large files, we 
often compress them to save 
space. Later, we decompress
them when we need the original 
contents. 

Step File System 
Analogy

Compress ZIP the file

Store zipped Keep only .zip file

Decompress Unzip back to 
original



High-dimensional data

• Many datasets (e.g., images, audio, text) are:
• High-dimensional: e.g., a 128×128 RGB image = 49,152 features
• Redundant: nearby pixels or time steps often carry similar information
• Noisy: contain uninformative or irrelevant variations (e.g., lighting, 

background)

• Compressing helps focus on what really matters. 



Representation Learning

• In autoencoders:
• The encoder transforms input x into a lower-dimensional latent code z
• The goal is to preserve important information, not just reduce size

• This process is not arbitrary:
• The encoder learns to discard irrelevant variations
• It extracts the most informative and useful features to reconstruct x



What Happens During Compression 
(Encoder)
• We learn a function         which maps

• This transformation:
• Reduces dimension
• Filters out noise
• Forces the model to find structure in the data



Why it this useful?

• Dimensionality Reduction
• Visualize data (e.g., 2D t-SNE)
• Make downstream models faster and simpler

• Feature Extraction
• Latent code z can be reused for classification, clustering, etc.

• Robustness
• Small, informative codes resist overfitting
• Encourages generalization



Latent Code Alone Is Not Enough

• After the encoder compresses the input x into a latent 
representation z, we want to:
• Check whether this code really captures the important parts of the 

original input
• Reconstruct the input data to verify information retention

• A decoder gives the latent code a “reality check” — can we get 
back what we started with? 



What Does the Decoder Actually Do?

• The decoder is a learned function:

• It tries to map the compact latent vector z back to the original data 
space, reconstructing as accurately as possible:

• This trains the encoder to:
• Learn compressions that are reversible
• Avoid trivial or lossy encodings



Analogy

Step File System Analogy Autoencoder Analogy

Compress ZIP the file Encoder maps input x → 
latent z

Store zipped Keep only .zip file Store the compact latent 
features

Decompress Unzip back to original Decoder reconstructs 
\hat{x} from z



Architecture



Objective function

• We want to recover x’ as much as possible, that is minimize the 
difference between x’ and x

• There are various metrics to quantify the difference between two 
vectors, such as cross entropy when the activation function is 
sigmoid, or as simple as MSE loss:



Denoising Autoencoder (DAE)



Limitations of AE
• Trivial Identity Mapping

• If the encoder and decoder have too much capacity, the network might 
simply learn to copy the input to the output without extracting useful 
structure.

• Especially true when the latent dimension is large or the model is 
overparameterized.

• Sensitive to Noise
• A small perturbation in the input can lead to a large difference in the 

reconstruction.
• The model doesn’t learn robustness by default.



Core idea

• If the model learns to recover 
the original input from a 
corrupted version, it must 
have captured deeper 
structure in the data 

• We will corrupt the input (add 
noise)



Types of Noise in DAE

• Gaussian noise: x̃  = x + ε
• Masking noise: randomly zero out features
• Salt-and-pepper noise: random 0/1 flips



Architecture



Objective function

• Similar to AE, we can use MSE as the loss function



Variational Autoencoder



Core idea

• Latent space becomes probabilistic
• Instead of mapping input x to a point z, we map to a distribution

typically a Gaussian.
• Add a prior over latent space

• Encourage all latent codes to stay close to a prior

• so we can sample from it at test time.



Architecture



Comparison: AE vs. DAE vs. VAE

• AE: deterministic, no noise, not generative
• DAE: robust to input noise, still deterministic
• VAE: probabilistic, structured latent space, generative



GAN vs. VAE


	Default Section
	Slide 1: Autoencoder
	Slide 2: Notations
	Slide 3: Autoencoder
	Slide 4: Large files
	Slide 5: High-dimensional data
	Slide 6: Representation Learning
	Slide 7: What Happens During Compression (Encoder)
	Slide 8: Why it this useful?
	Slide 9: Latent Code Alone Is Not Enough
	Slide 10: What Does the Decoder Actually Do?
	Slide 11: Analogy
	Slide 12: Architecture
	Slide 13: Objective function
	Slide 14: Denoising Autoencoder (DAE)
	Slide 15: Limitations of AE
	Slide 16: Core idea
	Slide 17: Types of Noise in DAE
	Slide 18: Architecture
	Slide 19: Objective function
	Slide 20: Variational Autoencoder
	Slide 21: Core idea
	Slide 22: Architecture
	Slide 23: Comparison: AE vs. DAE vs. VAE
	Slide 24: GAN vs. VAE


