Generative Adversarial Network (GAN)

Slides credit: Dr. Hung-Yi Lee

Updates:

- HW 4 out
 - Due August 15, 11:59 PM
 - No late submissions!

All Kinds of GAN ...

https://github.com/hindupuravinash/the-gan-zoo

Mihaela Rosca, Balaji Lakshminarayanan, David Warde-Farley, Shakir Mohamed, "Variational Approaches for Auto-Encoding Generative Adversarial Networks", arXiv, 2017

²We use the Greek α prefix for α -GAN, as AEGAN and most other Latin prefixes seem to have been taken https://deephunt.in/the-gan-zoo-79597dc8c347.

Number of papers whose titles include the keyword

Outline

Basic Idea of GAN

GAN as structured learning

Can Generator learn by itself?

Can Discriminator generate?

A little bit theory

Generation

Not very useful?
We will control what to generate latter
→ Conditional Generation

Image Generation

Sentence Generation

$$\begin{bmatrix} 0.3 \\ -0.1 \\ \vdots \\ -0.7 \end{bmatrix} \begin{bmatrix} 0.1 \\ -0.1 \\ \vdots \\ 0.2 \end{bmatrix} \begin{bmatrix} -0.3 \\ 0.1 \\ \vdots \\ 0.5 \end{bmatrix} \longrightarrow \begin{matrix} NN \\ Generator \end{matrix} \longrightarrow \begin{matrix} How are you? \\ Good morning. \\ Good afternoon. \end{matrix}$$

Basic Idea of GAN

This is where the term "adversarial" comes from.

Prey ←→ Predator

Basic Idea of GAN

Generator (student)

Discriminator (teacher)

Generator v1

Discriminator v1

Generator v2

All are blur

Discriminator **v**2

Generator **v**3

Some are blur

Why not learn directly?

Why not generate directly?

Algorithm

- Initialize generator and discriminator
- G

D

• In each training iteration:

Step 1: Fix generator G, and update discriminator D

Discriminator learns to assign high scores to real objects and low scores to generated objects.

Algorithm

- Initialize generator and discriminator
- In each training iteration:

Step 2: Fix discriminator D, and update generator G

Generator learns to "fool" the discriminator

We want the output of the large network to be?

Algorithm Initialize θ_d for D and θ_g for G

- In each training iteration:
 - Sample m examples $\{x^1, x^2, ..., x^m\}$ from database
 - Sample m noise samples $\{z^1, z^2, ..., z^m\}$ from a distribution

Learning

- Obtaining generated data $\{2 3 1,2 3 2, \ldots, 2 3 m\}$, $2 3 i = G(z^i)$
- Update discriminator parameters $heta_d$ to maximize

•
$$\nabla = \frac{1}{m} \sum_{i=1}^{m} log D(x^{i}) + \frac{1}{m} \sum_{i=1}^{m} log (1 - D(2e^{i}))$$

•
$$\theta_d \leftarrow \theta_d + \eta \nabla \nabla (\theta_d)$$

• Sample m noise samples $\{z^1, z^2, ..., z^m\}$ from a distribution

Learning

G

Update generator parameters $\theta_{\rm g}$ to maximize

•
$$\nabla = \frac{1}{m} \sum_{i=1}^{m} log \left(D\left(G(z^i) \right) \right)$$

•
$$\theta_{\rm g} \leftarrow \theta_{\rm g} + \eta \nabla \nabla (\theta_{\rm g})$$

Training iterations

We can control the generation.

Outline

Basic Idea of GAN

GAN as structured learning

Can Generator learn by itself?

Can Discriminator generate?

A little bit theory

Structured Learning

Machine learning is to find a function f

$$f: X \to Y$$

Regression: output a scalar

Classification: output a "class" (one-hot vector)

Structured Learning/Prediction: output a sequence, a matrix, a graph, a tree

Output is composed of components with dependency

Output Sequence

$$f: X \to Y$$

Machine Translation

X: (sentence of language 1)

Y: (sentence of language 2)

Speech Recognition

X: (speech)

Y: "Good morning!" (transcription)

Chat-bot

X: "How are you?" (what a user says)

Y: "I'm fine." (response of machine)

Output Matrix

$f: X \to Y$

Image to Image

Colorization:

Ref: https://arxiv.org/pdf/1611.07004v1.pdf

Text to Image

X: "this white and yellow flower have thin white petals and a round yellow stamen"

ref: https://arxiv.org/pdf/1605.05396.pdf

Why Structured Learning Challenging?

- One-shot/Zero-shot Learning:
 - In classification, each class has some examples.
 - In structured learning,
 - If you consider each possible output as a "class"
 - → One-shot learning;
 - Since the output space is huge, most "classes" may not have any training data
 - → Zero-shot learning;
 - Machine has to create new stuff during testing.
 - Need more intelligence

Why Structured Learning Challenging?

- Machine has to learn to do planning
 - Machine generates objects component-by-component, but it should have a big picture in its mind.
 - Since the output components have dependency, they should be considered globally.

Do not know if a pixel is a good or bad generation.

Structured Learning Approach

Generator

Learn to generate the object at the component level. Cons: missing global sense.

Discriminator

Evaluating the whole object, and find the best one Cons: missing local details.

Outline

Basic Idea of GAN

GAN as structured learning

Can Generator learn by itself?

Can Discriminator generate?

A little bit theory

Generator

code:

(where does they come from?)

Image:

$$\begin{bmatrix} 0.1 \\ 0.9 \end{bmatrix}$$

$$\begin{bmatrix} 0.2 \\ -0.1 \end{bmatrix}$$

$$\begin{bmatrix} 0.3 \\ 0.2 \end{bmatrix}$$

As close as possible

$$\begin{bmatrix} 0.1 \\ 0.9 \end{bmatrix} \longrightarrow \begin{matrix} NN \\ Generator \end{matrix} \longrightarrow \begin{matrix} image \end{matrix}$$

Classification: $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} y_1 \\ y_2 \\ \vdots \end{bmatrix}$ $\begin{bmatrix} 1 \\ 0 \\ \vdots \end{bmatrix}$

Generator

NN Generator vectors

code:

(where does they come from?)

Image:

 $\begin{bmatrix} 0.1 \\ -0.5 \end{bmatrix}$

 $\begin{bmatrix} 0.1 \\ 0.9 \end{bmatrix}$

 $\begin{bmatrix} 0.2 \\ -0.1 \end{bmatrix}$

2

 $\begin{bmatrix} 0.3 \\ 0.2 \end{bmatrix}$

3

Encoder in auto-encoder provides the code ©

Auto-encoder

Randomly generate a vector as code

NN
Decoder

Image ?

Generator

Outline

Basic Idea of GAN

GAN as structured learning

Can Generator learn by itself?

Can Discriminator generate?

A little bit theory

Evaluation function, Potential Function, Energy Function ...

Discriminator is a function D (network, can deep)

$$D: X \to R$$

- Input x: an object x (e.g. an image)
- Output D(x): a scalar which represents how "good" x is

Can we use the discriminator to generate objects?

• It is easier to catch the relation between the components by top-down evaluation.

This CNN filter is good enough.

Suppose we already have a good discriminator
 D(x) ...

Inference

ullet Generate object $ilde{x}$ that

$$\widetilde{x} = \arg\max_{x \in X} D(x)$$

Enumerate all possible x !!!

It is feasible ???

How to learn the discriminator?

I have some real images

Discriminator only learns to output "1" (real).

Discriminator training needs some negative examples.

Negative examples are critical.

How to generate realistic negative examples?

General Algorithm

- Given a set of positive examples, randomly generate a set of negative examples.
- In each iteration

 Learn a discriminator D that can discriminate positive and negative examples.

Generate negative examples by discriminator D

$$\widetilde{x} = \arg\max_{x \in X} D(x)$$

In practice, you cannot decrease all the x other than real examples.

- Training

In the end

Generator v.s. Discriminator

Generator

- Pros:
 - Easy to generate even with deep model
- Cons:
 - Imitate the appearance
 - Hard to learn the correlation between components

<u>Discriminator</u>

- Pros:
 - Considering the big picture
- Cons:
 - Generation is not always feasible
 - Especially when your model is deep
 - How to do negative sampling?

Generator + Discriminator

General Algorithm

- Given a set of positive examples, randomly generate a set of negative examples.
- In each iteration

 Learn a discriminator D that can discriminate positive and negative examples.

V.S.

D

Generate negative examples by discriminator D

$$\longrightarrow \widetilde{x} = \widetilde{x} = \arg \max_{x \in X} D(x)$$

Benefit of GAN

- From Discriminator's point of view
 - Using generator to generate negative samples

$$= \widetilde{x} = \arg \max_{x \in X} D(x)$$
 efficient

- From Generator's point of view
 - Still generate the object component-by-component
 - But it is learned from the discriminator with global view.

wgan-gp-sub1000-gauss4 **GAN** Samples and Decision Boundary G: 2*20; D: 4*10; prior dim: 2 10 -105 -15-200 --25-30**VAE** -35**GAN** https://arxiv.org/a -15 bs/1512.09300 10 -15-1015 Iter: 99500; D loss: -0.04111; G loss: 20.36

KLD(r,g)=[0.0.]; KLD(g,r)=[0.6510948 0.72137838]

FID[Martin Heusel, et al., NIPS, 2017]: Smaller is better

Outline

Basic Idea of GAN

GAN as structured learning

Can Generator learn by itself?

Can Discriminator generate?

A little bit theory

Generator

x: an image (a high-dimensional vector)

• A generator G is a network. The network defines a probability distribution P_G

$$G^* = arg \min_{G} \underline{Div(P_G, P_{data})}$$

Divergence between distributions P_G and P_{data} How to compute the divergence?

$$G^* = arg \min_{G} Div(P_G, P_{data})$$

Although we do not know the distributions of P_G and P_{data} , we can sample from them.

Sampling from P_G

$$G^* = arg \min_{G} Div(P_G, P_{data})$$

 \uparrow : data sampled from P_{data}

 \uparrow : data sampled from P_G

Using the example objective function is exactly the same as training a binary classifier.

Example Objective Function for D

$$V(G,D) = E_{x \sim P_{data}} [log D(x)] + E_{x \sim P_G} [log(1 - D(x))]$$
(G is fixed)

Training:
$$D^* = arg \max_{D} V(D, G)$$

The maximum objective value is related to JS divergence.

Discriminator
$$G^* = arg \min_{G} Div(P_G, P_{data})$$

 \star : data sampled from P_{data}

: data sampled from P_G

Training:

$$D^* = \arg\max_{D} V(D, G)$$

$$G^* = arg \min_{G} \frac{D max PV_{G}(B_d \Omega_d)}{D}$$

$$D^* = arg \max_{D} V(D, G)$$

The maximum objective value is related to JS divergence.

- Initialize generator and discriminator
- In each training iteration:

Step 1: Fix generator G, and update discriminator D

Step 2: Fix discriminator D, and update generator G

Can we use other divergence?

Jame	$D_f(P Q)$	Generator $f(u)$
otal variation	$\frac{1}{2} \int p(x) - q(x) \mathrm{d}x$	$\frac{1}{2} u-1 $
Tullback-Leibler	$\int p(x) \log \frac{p(x)}{q(x)} dx$	$u \log u$
everse Kullback-Leibler	$\int q(x) \log \frac{q(x)}{p(x)} dx$	$-\log u$
earson χ^2	$\int \frac{(q(x)-p(x))^2}{p(x)} dx$	$(u-1)^2$
Jeyman χ^2	$\int \frac{(p(x) - q(x))^2}{q(x)} \mathrm{d}x$	$\frac{(1-u)^2}{u}$
quared Hellinger	$\int \left(\sqrt{p(x)} - \sqrt{q(x)}\right)^2 dx$	$(\sqrt{u}-1)^2$
effrey	$\int (p(x) - q(x)) \log \left(\frac{p(x)}{q(x)}\right) dx$	$(u-1)\log u$
ensen-Shannon	$\frac{1}{2} \int p(x) \log \frac{2p(x)}{p(x) + q(x)} + q(x) \log \frac{2q(x)}{p(x) + q(x)} dx$	$-(u+1)\log\frac{1+u}{2} + u\log u$
ensen-Shannon-weighted	$\int p(x)\pi \log \frac{p(x)}{\pi p(x) + (1-\pi)q(x)} + (1-\pi)q(x) \log \frac{q(x)}{\pi p(x) + (1-\pi)q(x)} dx$	$\pi u \log u - (1 - \pi + \pi u) \log(1 - \pi + \pi u)$
GAN	$\int p(x) \log \frac{2p(x)}{p(x) + q(x)} + q(x) \log \frac{2q(x)}{p(x) + q(x)} dx - \log(4)$	$u\log u - (u+1)\log(u+1)$
parson χ^2 yman χ^2 uared Hellinger frey asen-Shannon asen-Shannon-weighted	$\int \frac{(q(x)-p(x))^{2}}{p(x)} dx$ $\int \frac{(p(x)-q(x))^{2}}{q(x)} dx$ $\int \left(\sqrt{p(x)} - \sqrt{q(x)}\right)^{2} dx$	$ (u-1)^{2} $ $ \frac{(1-u)^{2}}{u} $ $ (\sqrt{u}-1)^{2} $ $ (u-1)\log u $ $ -(u+1)\log \frac{1+u}{2} + u\log u $ $ \pi u \log u - (1-\pi + \pi u)\log(1-\pi - u) $

Using the divergence you like ©

Name	Conjugate $f^*(t)$
Total variation	t
Kullback-Leibler (KL)	$\exp(t-1)$
Reverse KL	$ \exp(t-1) \\ -1 - \log(-t) $
Pearson χ^2	$\frac{1}{4}t^2 + t$
Neyman χ^2	$\frac{1}{2} - 2\sqrt{1-t}$
Squared Hellinger	$\frac{t}{1-t}$
Jeffrey	$W(e^{1-t}) + \frac{1}{W(e^{1-t})} + t - 2$
Jensen-Shannon	$-\log(2-\exp(t))$
Jensen-Shannon-weighted	$(1-\pi)\log\frac{1-\pi}{1-\pi e^{t/\pi}}$
GAN	$-\log(1-\exp(t))$