Unsupervised Learning

Unsupervised Learning

- Supervised learning used labeled data pairs (\mathbf{x}, \mathbf{y}) to learn a function $f: \mathbf{X} \rightarrow \mathbf{Y}$
 - But, what if we don't have labels?
- No labels = unsupervised learning
- Only some points are labeled = semi--supervised
 learning
 - Labels may be expensive to obtain, so we only get a few
- Clustering is the unsupervised grouping of data points. It can be used for knowledge discovery.

Tasks

- Clustering
 - K-Means (Covered today)
- Dimensionality Reduction
 - PCA (Not covered)
- Density Estimation
 - Gaussian Mixture Models (Not covered)
- Generative Modeling
 - VAE, GAN (Next lectures)

Some material adapted from slides by Andrew Moore, CMU.

Visit http://www.autonlab.org/tutorials/ for Andrew's repository of Data Mining tutorials.

Clustering Data

K–Means (k , X)

- Randomly choose k cluster center locations (centroids)
- Loop until convergence
 - Assign each point to the cluster of the closest centroid
 - Re–estimate the cluster centroids based on the data assigned to each cluster

K–Means (k , X)

- Randomly choose k cluster center locations (centroids)
- Loop until convergence
 - Assign each point to the cluster of the closest centroid
 - Re–estimate the cluster centroids based on the data assigned to each cluster

K–Means (k , X)

- Randomly choose k cluster center locations (centroids)
- Loop until convergence
 - Assign each point to the cluster of the closest centroid
 - Re–estimate the cluster centroids based on the data assigned to each cluster

K–Means

Example generated by Andrew Moore using Dan Pelleg's superduper fast K-means system:

Dan Pelleg and Andrew
Moore. Accelerating
Exact k-means
Algorithms with
Geometric Reasoning.
Proc. Conference on
Knowledge Discovery in
Databases 1999.

Visualizing K-Means

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

K-Means Objective Function

 K-means finds a local optimum of the following objective function:

where $S = \{S_1, \dots, S_k\}$ is a partitioning over $X = \{x_1, \dots, x_n\}$ s.t. $X = \begin{cases} S_k \\ i=1 \end{cases} S_i$ and $\mu_i = \text{mean}(S_i)$

Problems with K–Means

- Very sensitive to the initial points
 - Do many runs of K-Means, each with different initial centroids
 - Seed the centroids using a better method than randomly choosing the centroids
 - e.g., Farthest--first sampling
- Must manually choose k
 - Learn the optimal k for the clustering
 - Note that this requires a performance measure

Problems with K-Means

How do you tell it which clustering you want?

Constrained clustering techniques (semi--supervised)

Generative Modeling

Discriminative vs Generative Modeling

- **Discriminative modeling** focuses on learning the decision boundary between classes.
 - Common in classification tasks, e.g., logistic regression, neural networks.
- Generative modeling learns the data distribution (e.g., p(x) or p(x, y))
 - Can be used to generate new data similar to the training set.
- Important: Not all generative models are unsupervised!
 - Some, like Naive Bayes are trained with labels.

Discrimination vs. Generation

Generation is the "inverse" process

Slide Credit: Angie Liu

Generative Models

 A generative model takes in a random noise vector (like rolling dice), and produces a realistic-looking sample from the learned data distribution.

Some Generative Models

- VAE (Variational Autoencoder)
- GANs (Generative Adversarial Networks)
- Diffusion Models