
Deep Learning Recipe

Neural
Network

Good Results on
Testing Data?

Good Results on
Training Data?

Step 3: pick the
best function

Step 2: goodness
of function

Step 1: define a
set of function

YES

YES

NO

NO

Overfitting!

Recipe of Deep Learning

Do not always blame Overfitting

Deep Residual Learning for Image Recognition
http://arxiv.org/abs/1512.03385

Testing Data

Overfitting?

Training Data

Not well trained

Neural
Network

Good Results on
Testing Data?

Good Results on
Training Data?

YES

YES

Recipe of Deep Learning

Different approaches for
different problems.

e.g. adaptive learning rate for
good results on training data
e.g. dropout for good results
on testing data

Good Results on
Testing Data?

Good Results on
Training Data?

YES

YES

Recipe of Deep Learning

New activation function

Adaptive Learning Rate

Early Stopping

Regularization

Dropout

Hard to get the power of Deep …

Deeper usually does not imply better.

Results on Training Data

Vanishing Gradient Problem

Larger gradients

Almost random Already converge
based on random!?

Learn very slow Learn very fast

1x

2x

…
…

Nx

…
…

…
…

…
…

……

……

……

…
…

y1

y2

yM

Smaller gradients

Vanishing Gradient Problem

1x

2x

…
…

Nx

…
…

…
…

…
…

……

……

……

…
…

𝑦!

𝑦"

𝑦#

…
…

"𝑦!

"𝑦"

"𝑦#

𝐶

Intuitive way to compute the derivatives …
𝜕𝐶
𝜕𝑤 =?

+∆𝑤

+∆𝐶

∆𝐶
∆𝑤

Smaller gradients

Large
input

Small
output

ReLU

• Rectified Linear Unit (ReLU)

Reason:

1. Fast to compute

2. Biological reason

3. Infinite sigmoid
with different biases

4. Vanishing gradient
problem

𝑧

𝑎
𝑎 = 𝑧

𝑎 = 0

𝜎 𝑧

[Xavier Glorot, AISTATS’11]
[Andrew L. Maas, ICML’13]
[Kaiming He, arXiv’15]

ReLU

1x

2x

1y

2y
0

0

0

0

𝑧

𝑎
𝑎 = 𝑧

𝑎 = 0

ReLU

1x

2x

1y

2y

A Thinner linear network

Do not have
smaller gradients

𝑧

𝑎
𝑎 = 𝑧

𝑎 = 0

The whole network becomes linear? (We want non-linearity)

ReLU - variant

𝑧

𝑎
𝑎 = 𝑧

𝑎 = 0.01𝑧

𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈

𝑧

𝑎
𝑎 = 𝑧

𝑎 = 𝛼𝑧

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐 𝑅𝑒𝐿𝑈

α also learned by
gradient descent

Maxout

• Learnable activation function [Ian J. Goodfellow, ICML’13]

Max

1x

2x

Input

Max

+ 5

+ 7

+ −1

+ 1

7

1

Max

Max

+ 1

+ 2

+ 4

+ 3

2

4

ReLU is a special cases of Maxout

You can have more than 2 elements in a group.

neuron

Maxout

Max

x

1

Input
+ 𝑧!

+ 𝑧"
𝑎

𝑚𝑎𝑥 𝑧! , 𝑧"

𝑤
𝑏

0

0

𝑥

𝑧 = 𝑤𝑥 + 𝑏
𝑎

x

1

Input ReLU
𝑧

𝑤

𝑏

𝑎

𝑥
𝑧! = 𝑤𝑥 + 𝑏

𝑎

𝑧" =0

ReLU is a special cases of Maxout

Maxout

Max

x

1

Input
+ 𝑧!

+ 𝑧"
𝑎

𝑚𝑎𝑥 𝑧! , 𝑧"

𝑤
𝑏

𝑤#

𝑏#

𝑥

𝑧 = 𝑤𝑥 + 𝑏
𝑎

x

1

Input ReLU
𝑧

𝑤

𝑏

𝑎

𝑥
𝑧! = 𝑤𝑥 + 𝑏

𝑎

𝑧" = 𝑤#𝑥 + 𝑏#

Learnable Activation
Function

More than ReLU

Maxout

• Learnable activation function [Ian J. Goodfellow, ICML’13]

• Activation function in maxout network can be
any piecewise linear convex function
• How many pieces depending on how many

elements in a group

2 elements in a group 3 elements in a group

Maxout - Training

• Given a training data x, we know which z would be
the max

Max

1x

2x

Input

Max𝑥

+ 𝑧!!

+ 𝑧"!

+ 𝑧$!

+ 𝑧%!

𝑎!!

𝑎"!

Max

Max

+ 𝑧!"

+ 𝑧""

+ 𝑧$"

+ 𝑧%"

𝑎!"

𝑎""

𝑎! 𝑎"

𝑚𝑎𝑥 𝑧!!, 𝑧"!

Maxout - Training

• Given a training data x, we know which z would be
the max

• Train this thin and linear network

1x

2x

Input

𝑥

+ 𝑧!!

+ 𝑧"!

+ 𝑧$!

+ 𝑧%!

𝑎!!

𝑎"!

+ 𝑧!"

+ 𝑧""

+ 𝑧$"

+ 𝑧%"

𝑎!"

𝑎""

𝑎! 𝑎"

Different thin and linear network for different examples

Good Results on
Testing Data?

Good Results on
Training Data?

YES

YES

Recipe of Deep Learning

New activation function

Adaptive Learning Rate

Early Stopping

Regularization

Dropout

Review

𝑤!

𝑤"

Larger
Learning Rate

Smaller
Learning Rate

Adagrad

𝑤)*! ← 𝑤) −
𝜂

∑+,-) 𝑔+ "
𝑔)

Use first derivative to estimate second derivative

RMSProp

𝑤!

𝑤"

Error Surface can be very complex when training NN.

Smaller
Learning Rate

Larger
Learning Rate

RMSProp
𝑤! ← 𝑤- −

𝜂
𝜎-
𝑔-

…
…

𝑤" ← 𝑤! −
𝜂
𝜎!
𝑔!

𝑤)*! ← 𝑤) −
𝜂
𝜎)
𝑔)

𝜎- = 𝑔-

𝜎! = 𝛼 𝜎- " + 1 − 𝛼 𝑔! "

𝑤. ← 𝑤" −
𝜂
𝜎"
𝑔" 𝜎" = 𝛼 𝜎! " + 1 − 𝛼 𝑔" "

𝜎) = 𝛼 𝜎)/! " + 1 − 𝛼 𝑔) "

Root Mean Square of the gradients
with previous gradients being decayed

Hard to find
optimal network parameters

Total
Loss

The value of a network parameter w

Very slow at the
plateau

Stuck at local minima

𝜕𝐿 ∕ 𝜕𝑤
= 0

Stuck at saddle point

𝜕𝐿 ∕ 𝜕𝑤
= 0

𝜕𝐿 ∕ 𝜕𝑤
≈ 0

In physical world ……

• Momentum

How about put this phenomenon
in gradient descent?

Review: Vanilla Gradient Descent

Start at position 𝜃&

Compute gradient at 𝜃&

Move to 𝜃! = 𝜃& - η𝛻𝐿 𝜃&

Compute gradient at 𝜃!

Move to 𝜃" = 𝜃! – η𝛻𝐿 𝜃!
Movement
Gradient

…
…

𝜃&

𝜃!

𝜃"

𝜃$

𝛻𝐿 𝜃&

𝛻𝐿 𝜃!

𝛻𝐿 𝜃"

𝛻𝐿 𝜃$

Stop until 𝛻𝐿 𝜃' ≈ 0

Momentum
Start at point 𝜃&

Compute gradient at 𝜃&

Move to 𝜃! = 𝜃& + v1

Compute gradient at 𝜃!

Movement v0=0

Movement v1 = λv0 - η𝛻𝐿 𝜃&

Movement v2 = λv1 - η𝛻𝐿 𝜃!

Move to 𝜃" = 𝜃! + v2Movement

Gradient

𝜃&

𝜃!

𝜃"

𝜃$

𝛻𝐿 𝜃& 𝛻𝐿 𝜃!

𝛻𝐿 𝜃"

𝛻𝐿 𝜃$ Movement not just based
on gradient, but previous
movement.

Movement
of last step

Movement: movement of last
step minus gradient at present

Momentum

vi is actually the weighted sum of
all the previous gradient:
𝛻𝐿 𝜃& ,𝛻𝐿 𝜃! , … 𝛻𝐿 𝜃()!

v0 = 0

v1 = - η𝛻𝐿 𝜃&

v2 = - λ η𝛻𝐿 𝜃& - η𝛻𝐿 𝜃!

…
…

Start at point 𝜃&

Compute gradient at 𝜃&

Move to 𝜃! = 𝜃& + v1

Compute gradient at 𝜃!

Movement v0=0

Movement v1 = λv0 - η𝛻𝐿 𝜃&

Movement v2 = λv1 - η𝛻𝐿 𝜃!

Move to 𝜃" = 𝜃! + v2

Movement not just based
on gradient, but previous
movement

Movement: movement of last
step minus gradient at present

Movement =
Negative of 𝜕𝐿∕𝜕𝑤 + Momentum

Momentum
cost

𝜕𝐿∕𝜕𝑤 = 0

Still not guarantee reaching
global minima, but give some
hope ……

Negative of 𝜕𝐿 ∕ 𝜕𝑤
Momentum
Real Movement

Adam RMSProp + Momentum

for momentum
for RMSprop

Good Results on
Testing Data?

Good Results on
Training Data?

YES

YES

Recipe of Deep Learning

New activation function

Adaptive Learning Rate

Early Stopping

Regularization

Dropout

Early Stopping

Epochs

Total
Loss

Training set

Testing set
Stop at

here
Validation set

http://keras.io/getting-started/faq/#how-can-i-interrupt-training-when-
the-validation-loss-isnt-decreasing-anymoreKeras:

Good Results on
Testing Data?

Good Results on
Training Data?

YES

YES

Recipe of Deep Learning

New activation function

Adaptive Learning Rate

Early Stopping

Regularization

Dropout

Regularization

• New loss function to be minimized
• Find a set of weight not only minimizing original

cost but also close to zero

() ()
22

1L qlqq +=¢ L

Original loss
(e.g. minimize square
error, cross entropy …)

{ }!,, 21 ww=q

(usually not consider biases)

() () !++= 2
2

2
12

wwq

Regularization term

L2 regularization:

Regularization

• New loss function to be minimized

Gradient: w
ww

l+
¶
¶

=
¶
¢¶ LL

Update:
w

ww tt

¶
¢¶

-®+ L1 h ÷
ø
ö

ç
è
æ +
¶
¶

-= tt w
w

w lh L

()
w

wt
¶
¶

--=
L1 hhl

Closer to zero

() ()
22

1L qlqq +=¢ L

Weight Decay

() () !++= 2
2

2
12

wwq
L2 regularization:

Regularization

• New loss function to be minimized

()w
ww

sgnLL l+
¶
¶

=
¶
¢¶

Update:

w
ww tt

¶
¢¶

-®+ L1 h ()÷
ø
ö

ç
è
æ +
¶
¶

-= tt w
w

w sgnL lh

()tt w
w

w sgnL hlh -
¶
¶

-= Always reduce |w|

() ()
12

1L qlqq +=¢ L

!++= 211
wwq

L1 regularization:

()
w

wt
¶
¶

--=
L1 hhl …… L2

Regularization - Weight Decay

• Our brain prunes out the useless link between
neurons.

Doing the same thing to machine’s brain improves
the performance.

Good Results on
Testing Data?

Good Results on
Training Data?

YES

YES

Recipe of Deep Learning

New activation function

Adaptive Learning Rate

Early Stopping

Regularization

Dropout

Dropout
Training:

Ø Each time before updating the parameters
l Each neuron has p% to dropout

Dropout
Training:

Ø Each time before updating the parameters
l Each neuron has p% to dropout

l Using the new network for training
The structure of the network is changed.

Thinner!

For each mini-batch, we resample the dropout neurons

Dropout
Testing:

Ø No dropout

l If the dropout rate at training is p%,
all the weights times 1-p%

l Assume that the dropout rate is 50%.
If a weight w = 1 by training, set 𝑤 = 0.5 for testing.

Dropout - Intuitive Reason

• Why the weights should multiply (1-p%) (dropout
rate) when testing?

Training of Dropout Testing of Dropout

𝑤!
𝑤"
𝑤$
𝑤%

𝑧

𝑤!
𝑤"
𝑤$
𝑤%

𝑧#

Assume dropout rate is 50%

0.5×
0.5×
0.5×
0.5×

No dropout
Weights from training

𝑧# ≈ 2𝑧

𝑧# ≈ 𝑧
Weights multiply 1-p%

Testing of Dropout

w1 w2

x1 x2

w1 w2

x1 x2

w1 w2

x1 x2

w1 w2

x1 x2

z=w1x1+w2x2 z=w2x2

z=w1x1 z=0

x1 x2

w1 w2
1
2

1
2

x1 x2

w1 w2

z=w1x1+w2x2

𝑧 =
1
2
𝑤!𝑥! +

1
2
𝑤"𝑥"

Neural
Network

Good Results on
Testing Data?

Good Results on
Training Data?

Step 3: pick the
best function

Step 2: goodness
of function

Step 1: define a
set of function

YES

YES

NO

NO

Overfitting!

Recipe of Deep Learning

	086a7582af226fc8fd666f29e48d77c24b95b78571e035079a8b87bf4a7a3204.pdf
	086a7582af226fc8fd666f29e48d77c24b95b78571e035079a8b87bf4a7a3204.pdf

