
Deep Learning Recipe



Neural 
Network

Good Results on 
Testing Data?

Good Results on 
Training Data?

Step 3: pick the 
best function

Step 2: goodness 
of function

Step 1: define a 
set of function              

YES

YES

NO

NO

Overfitting!

Recipe of Deep Learning



Do not always blame Overfitting

Deep Residual Learning for Image Recognition
http://arxiv.org/abs/1512.03385

Testing Data

Overfitting?

Training Data

Not well trained



Neural 
Network

Good Results on 
Testing Data?

Good Results on 
Training Data?

YES

YES

Recipe of Deep Learning

Different approaches for 
different problems.

e.g. adaptive learning rate for 
good results on training data
e.g. dropout for good results 
on testing data



Good Results on 
Testing Data?

Good Results on 
Training Data?

YES

YES

Recipe of Deep Learning

New activation function

Adaptive Learning Rate

Early Stopping

Regularization

Dropout



Hard to get the power of Deep …

Deeper usually does not imply better.

Results on Training Data



Vanishing Gradient Problem

Larger gradients

Almost random Already converge
based on random!?

Learn very slow Learn very fast
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Vanishing Gradient Problem
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ReLU

• Rectified Linear Unit (ReLU)

Reason:

1. Fast to compute

2. Biological reason

3. Infinite sigmoid 
with different biases

4. Vanishing gradient 
problem

𝑧

𝑎
𝑎 = 𝑧

𝑎 = 0

𝜎 𝑧

[Xavier Glorot, AISTATS’11]
[Andrew L. Maas, ICML’13]
[Kaiming He, arXiv’15]



ReLU
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ReLU

1x

2x

1y

2y

A Thinner linear network

Do not have 
smaller gradients

𝑧

𝑎
𝑎 = 𝑧

𝑎 = 0

The whole network becomes linear? (We want non-linearity)



ReLU - variant

𝑧

𝑎
𝑎 = 𝑧

𝑎 = 0.01𝑧

𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈

𝑧

𝑎
𝑎 = 𝑧

𝑎 = 𝛼𝑧

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐 𝑅𝑒𝐿𝑈

α also learned by 
gradient descent



Maxout

• Learnable activation function [Ian J. Goodfellow, ICML’13]
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ReLU is a special cases of Maxout

You can have more than 2 elements in a group.

neuron



Maxout
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ReLU is a special cases of Maxout



Maxout
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Learnable Activation 
Function

More than ReLU



Maxout

• Learnable activation function [Ian J. Goodfellow, ICML’13]

• Activation function in maxout network can be 
any piecewise linear convex function
• How many pieces depending on how many 

elements in a group 

2 elements in a group 3 elements in a group



Maxout - Training

• Given a training data x, we know which z would be 
the max
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Maxout - Training

• Given a training data x, we know which z would be 
the max

• Train this thin and linear network
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Different thin and linear network for different examples



Good Results on 
Testing Data?

Good Results on 
Training Data?

YES

YES

Recipe of Deep Learning

New activation function

Adaptive Learning Rate

Early Stopping

Regularization

Dropout



Review

𝑤!

𝑤"

Larger 
Learning Rate

Smaller 
Learning Rate

Adagrad

𝑤)*! ← 𝑤) −
𝜂

∑+,-) 𝑔+ "
𝑔)

Use first derivative to estimate second derivative



RMSProp

𝑤!

𝑤"

Error Surface can be very complex when training NN.

Smaller 
Learning Rate

Larger 
Learning Rate



RMSProp
𝑤! ← 𝑤- −
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Root Mean Square of the gradients 
with previous gradients being decayed 



Hard to find 
optimal network parameters

Total
Loss

The value of a network parameter w

Very slow at the 
plateau

Stuck at local minima

𝜕𝐿 ∕ 𝜕𝑤
= 0

Stuck at saddle point

𝜕𝐿 ∕ 𝜕𝑤
= 0

𝜕𝐿 ∕ 𝜕𝑤
≈ 0



In physical world ……

• Momentum

How about put this phenomenon 
in gradient descent?



Review: Vanilla Gradient Descent

Start at position 𝜃&

Compute gradient at 𝜃&

Move to 𝜃! = 𝜃& - η𝛻𝐿 𝜃&

Compute gradient at 𝜃!

Move to 𝜃" = 𝜃! – η𝛻𝐿 𝜃!
Movement
Gradient

…
…

𝜃&

𝜃!

𝜃"

𝜃$

𝛻𝐿 𝜃&

𝛻𝐿 𝜃!

𝛻𝐿 𝜃"

𝛻𝐿 𝜃$

Stop until 𝛻𝐿 𝜃' ≈ 0



Momentum
Start at point 𝜃&

Compute gradient at 𝜃&

Move to 𝜃! = 𝜃& + v1

Compute gradient at 𝜃!

Movement v0=0

Movement v1 = λv0 - η𝛻𝐿 𝜃&

Movement v2 = λv1 - η𝛻𝐿 𝜃!

Move to 𝜃" = 𝜃! + v2Movement

Gradient

𝜃&

𝜃!

𝜃"

𝜃$

𝛻𝐿 𝜃& 𝛻𝐿 𝜃!

𝛻𝐿 𝜃"

𝛻𝐿 𝜃$ Movement not just based 
on gradient, but previous 
movement.

Movement
of last step

Movement: movement of last 
step minus gradient at present 



Momentum

vi is actually the weighted sum of 
all the previous gradient: 
𝛻𝐿 𝜃& ,𝛻𝐿 𝜃! , … 𝛻𝐿 𝜃()!

v0 = 0

v1 = - η𝛻𝐿 𝜃&

v2 = - λ η𝛻𝐿 𝜃& - η𝛻𝐿 𝜃!

…
…

Start at point 𝜃&

Compute gradient at 𝜃&

Move to 𝜃! = 𝜃& + v1

Compute gradient at 𝜃!

Movement v0=0

Movement v1 = λv0 - η𝛻𝐿 𝜃&

Movement v2 = λv1 - η𝛻𝐿 𝜃!

Move to 𝜃" = 𝜃! + v2

Movement not just based 
on gradient, but previous 
movement

Movement: movement of last 
step minus gradient at present 



Movement = 
Negative of 𝜕𝐿∕𝜕𝑤 + Momentum 

Momentum
cost

𝜕𝐿∕𝜕𝑤 = 0

Still not guarantee reaching 
global minima, but give some 
hope ……

Negative of 𝜕𝐿 ∕ 𝜕𝑤
Momentum
Real Movement



Adam RMSProp + Momentum 

for momentum
for RMSprop



Good Results on 
Testing Data?

Good Results on 
Training Data?

YES

YES

Recipe of Deep Learning

New activation function

Adaptive Learning Rate

Early Stopping

Regularization

Dropout



Early Stopping

Epochs

Total
Loss

Training set

Testing set
Stop at 

here
Validation set

http://keras.io/getting-started/faq/#how-can-i-interrupt-training-when-
the-validation-loss-isnt-decreasing-anymoreKeras:



Good Results on 
Testing Data?

Good Results on 
Training Data?

YES

YES

Recipe of Deep Learning

New activation function

Adaptive Learning Rate

Early Stopping

Regularization

Dropout



Regularization

• New loss function to be minimized
• Find a set of weight not only minimizing original 

cost but also close to zero

( ) ( )
22

1L qlqq +=¢ L

Original loss
(e.g. minimize square 
error, cross entropy …)

{ }!,, 21 ww=q

(usually not consider biases)

( ) ( ) !++= 2
2

2
12

wwq

Regularization term

L2 regularization:



Regularization

• New loss function to be minimized

Gradient: w
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Closer to zero
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L2 regularization:



Regularization

• New loss function to be minimized
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Regularization - Weight Decay

• Our brain prunes out the useless link between 
neurons.

Doing the same thing to machine’s brain improves 
the performance.



Good Results on 
Testing Data?

Good Results on 
Training Data?

YES

YES

Recipe of Deep Learning

New activation function

Adaptive Learning Rate

Early Stopping

Regularization

Dropout



Dropout
Training:

Ø Each time before updating the parameters
l Each neuron has p% to dropout



Dropout
Training:

Ø Each time before updating the parameters
l Each neuron has p% to dropout

l Using the new network for training
The structure of the network is changed.

Thinner!

For each mini-batch, we resample the dropout neurons



Dropout
Testing:

Ø No dropout

l If the dropout rate at training is p%, 
all the weights times 1-p%

l Assume that the dropout rate is 50%. 
If a weight  w = 1 by training, set 𝑤 = 0.5 for testing.



Dropout - Intuitive Reason

• Why the weights should multiply (1-p%) (dropout 
rate) when testing?

Training of Dropout Testing of Dropout

𝑤!
𝑤"
𝑤$
𝑤%

𝑧

𝑤!
𝑤"
𝑤$
𝑤%

𝑧#

Assume dropout rate is 50%

0.5×
0.5×
0.5×
0.5×

No dropout
Weights from training

𝑧# ≈ 2𝑧

𝑧# ≈ 𝑧
Weights multiply 1-p%



Testing of Dropout

w1 w2

x1 x2

w1 w2

x1 x2

w1 w2

x1 x2

w1 w2

x1 x2

z=w1x1+w2x2 z=w2x2

z=w1x1 z=0

x1 x2

w1 w2
1
2

1
2

x1 x2

w1 w2

z=w1x1+w2x2

𝑧 =
1
2
𝑤!𝑥! +

1
2
𝑤"𝑥"



Neural 
Network

Good Results on 
Testing Data?

Good Results on 
Training Data?

Step 3: pick the 
best function

Step 2: goodness 
of function

Step 1: define a 
set of function              

YES

YES

NO

NO

Overfitting!

Recipe of Deep Learning
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