Deep Learning Recipe

Recipe of Deep Learning

Step 1: define a
set of function

Neural
Network

Good Results on
Testing Data?

Good Results on
Training Data?

[
o
]

training error (%)

Do not always blame Overfitting

Not well trained

o

20p \
N Q u q_) 56-layer
\/ < NN

S . 20-layer
o

_ & Over «<ing?

o 20-layer

0 1 2 3 3 5 6 % i 2 o3 r 5 6
iter. (1e4) iter. (le4)
Training Data Testing Data

Deep Residual Learning for Image Recognition
http://arxiv.org/abs/1512.03385

Recipe of Deep Learning 2

: Good Results on
Different approaches for | Testing Data?

different problems.

e.g. adaptive learning rate for
good results on training data
e.g. dropout for good results Good Results on
on testing data Training Data?

Recipe of Deep Learning N

I Good Results on

Testing Data?

Good Results on
« Training Data?

Adaptive Learning Rate

Hard to get the power of Deep ...

Handwritting Digit Classification

~r
(W)
N
-
NN
8
A%
-

o
-
o
N
S

~J
v

Results on Training Data

—
o
—r
_—
[
(4
==
-
[
=
<

o -~
(8]

cn
(&)

Deeper usually does not imply better.

1 2 3 4 5 6 7 8 E
Layers

Vanishing Gradient Problem

Xie—A 3 e — Y
X
AN A WA T —_— y2
Xy— 4 = ... — VM
Smaller gradients Larger gradients
Learn very slow Learn very fast

Almost random Already converge

Vanishing Gradient Problem

Smaller gradients

X1

+Aw

Intuitive way to compute the derivatives ...

aC , AC
ow = Aw

RelLU

 Rectified Linear Unit (ReLU)

Reason:

a
0(2) 1 1. Fast to compute
2. Biological reason

3. Infinite sigmoid
with different biases

4. Vanishing gradient
[Xavier Glorot, AISTATS 11]
[Andrew L. Maas, ICML’'13] prOblem

[Kaiming He, arXiv’'15]

» Py
N

RelLU

A Thinner linear network

Do not have
smaller gradients

The whole network becomes linear? (We want non-linearity)

RelLU - variant

Leaky ReLU Parametric ReLU

a a

Q

|

N
Q
|
N

a=0.01z a=az

a also learned by
gradient descent

V] axout RelLU is a special cases of Maxout

e Learnable activation function [ian J. Goodfellow, ICML’13]

+ neuron +—’n
v T -8
" D 4 @

You can have more than 2 elements in a group.

More than RelLU

+_’Zl
'”p‘% a
X +—

w/) max{z1 , Zo }

1 Learnable Activation
Function

Maxout

e Learnable activation function [ian J. Goodfellow, ICML’13]

e Activation function in maxout network can be
any piecewise linear convex function

 How many pieces depending on how many
elements in a group

2 elements in a group

3 elements in a group

Maxout - Training

* Given a training data x, we know which z would be
the max
1 2

+—iz +—z
Input L -
Max —»a% Max —Pa%
X, +—z +

2
max{zi, za
2

X, +— 73 +
Max —»al Max —»az
X 2 2
i 1 +—z§ a’

+—4Z; a

Maxout - Training

* Given a training data x, we know which z would be

the max
2
+ +—7
aj
X, +— 73 +

2
x @ S
+ al +—z] a’

* Train this thm and linear network

Different thin and linear network for different examples

Recipe of Deep Learning \J

I Good Results on

Testing Data?

Dropout

Good Results on
« Training Data?

Adaptive Learning Rate

o — E—
6 50048 00U

Review Smaller

Learning Rate

Larger
Learning Rate

. 5 500
=3 B0 ——3A 000, —

Adagrad = = :

Use first derivative to estimate second derivative

RMSProp

Error Surface can be very complex when training NN.

\ Larger

Learning Rate

Smaller
Learning Rate

0 1.5 2.0

n
wl e w0 — — g0

50

n
w2 « wl—— gt

g1

N
w3 « w2 — — g2

52

n
t+1 yt — L gt

gt

g0 = g°

o =a(e%)? + (1 - a)(g")>

0% = a(@?)? + (1 - a)(g?)?

ot = Ja(ot=1)2 + (1 — a)(gt)>?

Root Mean Square of the gradients

with previous gradients being decayed

Hard to find
optimal network parameters

Total
Loss Very slow at the

plateau

Stuck at saddle point

Stuck at local minima

aL/ow i dL/ow
P =0 =0 —

The value of a network parameter w

In physical world

* Momentum

I How about put this phenomenon

\ in gradient descent?

- o

Review: Vanilla Gradient Descent

VL(6°) Start at position Y

Compute gradient at 8
Move to 81 =0° - nVL(6°)

Compute gradient at 61
- Gradient

Move to 8% = 91 —nVL(6?!
=P Movement vL(g3) VOVeo : nVL(6")

Stop until VL(6Y) = 0

Momentum

: 0
Movement: movement of last Start at point 6
step minus gradient at present Movement v0=0

Compute gradient at 6°
Movement vl =Av0 - nVL(6°)
Move to 81 = 90 + 1

Compute gradient at 1

=P Gradient RO KX Movement v2 = Avl - nVL(61)
P NOvement *e Move to 92 = 91 + V2

VL(6°) Movement not just based
on gradient, but previous

=====s MoOvement
of last step

movement.

Momentum

: 0
Movement: movement of last Start at point 6
step minus gradient at present Movement v0=0

Compute gradient at 6°

V' is actually the weighted sum of

all the previous gradient: Movement vt = Av0 - nVL(6°)
VL(6),VL(6Y),...VL(6' 1) Move to 81 =99 + 2
vo=0 Compute gradient at 1
vi=-nVL(8%) Movement v2 = Av! - nVL(61)

Move to 02 = 61 + 2

2=-AnVL(6°) -nVL(6"
v nVL(0") -nVL(0") Movement not just based

on gradient, but previous
movement

Still not guarantee reaching

Momentum global minima, but give some

cost
Movement =

Negative of dL /0w + Momentum

- Negative of dL / dw
===xp MoOmentum

- Real Movement

S mmEEw > «Ellll>

dL/dw =0

Adam RMSProp + Momentum

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g? indicates the elementwise
square g; © g;. Good default settings for the tested machine learning problems are = 0.001,

B1 = 0.9, B2 = 0.999 and € = 10~%. All operations on vectors are element-wise. With 3} and 3}
we denote 3, and 3> to the power .

Require: «: Stepsize

Require: 3,32 € [0,1): Exponential decay rates for the moment estimates
Require: f(#): Stochastic objective function with parameters 6

Require: 0: Initial parameter vector

mg < 0 (Initialize 1** moment vector) —, for momentum

vo < 0 (Initialize 2"¢ moment vector)

t «+ 0 (Initialize timestep) S for RI\/ISprop

while 6; not converged do
t—t+1
gt < Vo fi(0:—1) (Get gradients w.r.t. stochastic objective at timestep ¢)
my < 31 -my_1 + (1 — B1) - g; (Update biased first moment estimate)
vy < B2 - vi—1 + (1 — B2) - g7 (Update biased second raw moment estimate)
my¢ < my/(1 — 3}) (Compute bias-corrected first moment estimate)
Uy < v /(1 — %) (Compute bias-corrected second raw moment estimate)
O; < 0;_1 — a - my/(\/0t + €) (Update parameters)

end while

return 6; (Resulting parameters)

Recipe of Deep Learning N

I Good Results on

Testing Data?

Good Results on
« Training Data?

Adaptive Learning Rate

Early Stopping

Total
Loss
Validation set
M
Training set
Epochs
http://keras.i ing- eAani P)
Keras: ttp://keras.io/getting-started/fag/#how-can-i-interrupt-training-when

the-validation-loss-isnt-decreasing-anymore

Recipe of Deep Learning N

I Good Results on

Testing Data?

Good Results on
« Training Data?

Adaptive Learning Rate

Regularization

* New loss function to be minimized

* Find a set of weight not only minimizing original
cost but also close to zero

L'(@) = L(6)+ ﬂ%@z — Regularization term
6=1w,w,,...}

Original loss L2 regularization:

(e.g. minimize square HQHZ = (w1)2 + (W2)2 +...

error, cross entropy ... : '
; py ...) (usually not consider biases)

L2 regularization:

Regularization g =(w) +(w,) +...

* New loss function to be minimized

OoL" OL
=—+Aw
ow Ow

L’(@): L(9)+Z%H6’H2 Gradient:

Update: 14}“rl S -7 oL = _77(8_1" + Awtj
ow ow
oL

=(1- Zﬁ)wt . 77&

Closer to zero

L1 regularization:

Regularization 6], = [w |+ |w, |+

* New loss function to be minimized

oL’ oL
o~ + Asgn(w)

L'(0)=1(0)+ 4 0],

Update:

wt“—)wt—naL’ = - a_L+/ls n(wt)
- ow 7 ow .

— wt —n—— 77/1 Sgn(Wt) Always reduce |w|

ow -
=(1-gAw' —n=—= - L2
ow

Regularization - Weight Decay

e Qur brain prunes out the useless link between

neurons.
Synaptic Density

At birth 6 years old 14 years old

-

V

”‘&

i\'

| ngw -
Doing the same thing to machlne s brain improves

the performance.

Source: Rethmiong the Brain, Famibes and Work In mnmsene.mrmmnummﬁue

Recipe of Deep Learning \J

I Good Results on

Testing Data?

Good Results on
« Training Data?

Adaptive Learning Rate

Dropout

Training:

}\\!{{Q}" (—
N7 NXE T

WERRRELRN B
’/"\\ Xal =

» Each time before updating the parameters

® Each neuron has p% to dropout

Dropout

Training:

Thinner!

» Each time before updating the parameters
® Each neuron has p% to dropout

:> The structure of the network is changed.
® Using the new network for training

For each mini-batch, we resample the dropout neurons

Dropout

Testing:

- ‘\\/ ‘
ERRS HERRN DN
//‘\\"//‘\\ O

» No dropout

® |f the dropout rate at training is p%,
all the weights times 1-p%

® Assume that the dropout rate is 50%.
If a weight w = 1 by training, set w = 0.5 for testing.

Dropout - Intuitive Reason

* Why the weights should multiply (1-p%) (dropout
rate) when testing?

Training of Dropout Testing of Dropout
Assume dropout rate is 50% | No dropout

(\ Weights from training
0.5X%

Wy Wy - z' ~ 2z
W2\ Z <0.5>< WoN Z'
w 0.5X% W3

w. @SX w

Weights multiply 1-p%

»Z’%Z

Testing of Dropout

Z=WX{+W,X, Z=W,X,

Z =—-WiXq + EW2X2

Z=W1X1

Recipe of Deep Learning

Step 1: define a
set of function

Neural
Network

Good Results on
Testing Data?

Good Results on
Training Data?

	086a7582af226fc8fd666f29e48d77c24b95b78571e035079a8b87bf4a7a3204.pdf
	086a7582af226fc8fd666f29e48d77c24b95b78571e035079a8b87bf4a7a3204.pdf

