Deep Learning Recipe

Recipe of Deep Learning

Step 1: define a set of function

Step 2: goodness of function

Step 3: pick the best function

NO

Overfitting!

NO

Neural Network

Do not always blame Overfitting

Deep Residual Learning for Image Recognition http://arxiv.org/abs/1512.03385

Recipe of Deep Learning

Different approaches for different problems.

e.g. adaptive learning rate for good results on training data e.g. dropout for good results on testing data

Good Results on Testing Data?

Good Results on Training Data?

Recipe of Deep Learning YES **Early Stopping** Good Results on **Testing Data?** Regularization YES Dropout Good Results on New activation function **Training Data?** Adaptive Learning Rate

Hard to get the power of Deep ...

Vanishing Gradient Problem

Smaller gradients

Learn very slow

Almost random

Larger gradients

Learn very fast

Already converge

based on random!?

Vanishing Gradient Problem

Intuitive way to compute the derivatives ...

$$\frac{\partial C}{\partial w} = ? \frac{\Delta C}{\Delta w}$$

ReLU

Rectified Linear Unit (ReLU)

[Xavier Glorot, AISTATS'11] [Andrew L. Maas, ICML'13] [Kaiming He, arXiv'15]

Reason:

- 1. Fast to compute
- 2. Biological reason
- 3. Infinite sigmoid with different biases
- 4. Vanishing gradient problem

The whole network becomes linear? (We want non-linearity)

ReLU - variant

Leaky ReLU

Parametric ReLU

α also learned by gradient descent

ReLU is a special cases of Maxout

• Learnable activation function [lan J. Goodfellow, ICML'13]

You can have more than 2 elements in a group.

ReLU is a special cases of Maxout

More than ReLU

- Learnable activation function [lan J. Goodfellow, ICML'13]
 - Activation function in maxout network can be any piecewise linear convex function
 - How many pieces depending on how many elements in a group

Maxout - Training

Given a training data x, we know which z would be

Maxout - Training

Given a training data x, we know which z would be

• Train this thin and linear network

Different thin and linear network for different examples

Recipe of Deep Learning YES **Early Stopping** Good Results on **Testing Data?** Regularization YES Dropout Good Results on New activation function **Training Data?** Adaptive Learning Rate

Review

Adagrad

$$w^{t+1} \leftarrow w^t - \frac{\eta}{\sqrt{\sum_{i=0}^{t} (g^i)^2}} g^t$$

Use first derivative to estimate second derivative

RMSProp

Error Surface can be very complex when training NN.

RMSProp

$$w^{1} \leftarrow w^{0} - \frac{\eta}{\sigma^{0}} g^{0} \qquad \sigma^{0} = g^{0}$$

$$w^{2} \leftarrow w^{1} - \frac{\eta}{\sigma^{1}} g^{1} \qquad \sigma^{1} = \sqrt{\alpha(\sigma^{0})^{2} + (1 - \alpha)(g^{1})^{2}}$$

$$w^{3} \leftarrow w^{2} - \frac{\eta}{\sigma^{2}} g^{2} \qquad \sigma^{2} = \sqrt{\alpha(\sigma^{1})^{2} + (1 - \alpha)(g^{2})^{2}}$$

$$\vdots$$

 $w^{t+1} \leftarrow w^t - \frac{\eta}{\sigma^t} g^t$ $\sigma^t = \sqrt{\alpha(\sigma^{t-1})^2 + (1-\alpha)(g^t)^2}$

Root Mean Square of the gradients with previous gradients being decayed

Hard to find optimal network parameters

The value of a network parameter w

In physical world

Momentum

Review: Vanilla Gradient Descent

Momentum

Movement: movement of last step minus gradient at present

Start at point θ^0

Movement $v^0=0$

Compute gradient at θ^0

Movement $v^1 = \lambda v^0 - \eta \nabla L(\theta^0)$

Move to $\theta^1 = \theta^0 + v^1$

Compute gradient at θ^1

Movement $v^2 = \lambda v^1 - \eta \nabla L(\theta^1)$

Move to $\theta^2 = \theta^1 + v^2$

Movement not just based on gradient, but previous movement.

Momentum

Movement: movement of last step minus gradient at present

vⁱ is actually the weighted sum of all the previous gradient:

$$\nabla L(\theta^0), \nabla L(\theta^1), \dots \nabla L(\theta^{i-1})$$

$$v^0 = 0$$

$$v^1 = - \eta \nabla L(\theta^0)$$

$$v^2 = -\lambda \, \eta \nabla L(\theta^0) - \eta \nabla L(\theta^1)$$

Start at point θ^0

Movement $v^0=0$

Compute gradient at θ^0

Movement $v^1 = \lambda v^0 - \eta \nabla L(\theta^0)$

Move to $\theta^1 = \theta^0 + v^1$

Compute gradient at θ^1

Movement $v^2 = \lambda v^1 - \eta \nabla L(\theta^1)$

Move to $\theta^2 = \theta^1 + v^2$

Movement not just based on gradient, but previous movement

Momentum

Still not guarantee reaching global minima, but give some hope

Adam

RMSProp + Momentum

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t.

```
Require: \alpha: Stepsize
Require: \beta_1, \beta_2 \in [0, 1): Exponential decay rates for the moment estimates
Require: f(\theta): Stochastic objective function with parameters \theta
Require: \theta_0: Initial parameter vector
   m_0 \leftarrow 0 (Initialize 1st moment vector) \longrightarrow for momentum
   v_0 \leftarrow 0 (Initialize 2<sup>nd</sup> moment vector)
                                                       → for RMSprop
   t \leftarrow 0 (Initialize timestep)
   while \theta_t not converged do
      t \leftarrow t + 1
      g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1}) (Get gradients w.r.t. stochastic objective at timestep t)
      m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t (Update biased first moment estimate)
      v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 (Update biased second raw moment estimate)
      \widehat{m}_t \leftarrow m_t/(1-\beta_1^t) (Compute bias-corrected first moment estimate)
      \hat{v}_t \leftarrow v_t/(1-\beta_2^t) (Compute bias-corrected second raw moment estimate)
      \theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon) (Update parameters)
   end while
   return \theta_t (Resulting parameters)
```

Recipe of Deep Learning YES **Early Stopping** Good Results on **Testing Data?** Regularization YES Dropout Good Results on New activation function **Training Data?** Adaptive Learning Rate

Early Stopping

Keras: http://keras.io/getting-started/faq/#how-can-i-interrupt-training-when-the-validation-loss-isnt-decreasing-anymore

Recipe of Deep Learning YES **Early Stopping** Good Results on **Testing Data?** Regularization YES Dropout Good Results on New activation function **Training Data?** Adaptive Learning Rate

Regularization

- New loss function to be minimized
 - Find a set of weight not only minimizing original cost but also close to zero

$$L'(\theta) = L(\theta) + \lambda \frac{1}{2} \|\theta\|_{2} \longrightarrow \text{Regularization term}$$

$$\theta = \{w_{1}, w_{2}, \ldots\}$$

Original loss (e.g. minimize square error, cross entropy ...)

L2 regularization:

$$\|\theta\|_2 = (w_1)^2 + (w_2)^2 + \dots$$

(usually not consider biases)

Regularization

L2 regularization:

$$\|\theta\|_2 = (w_1)^2 + (w_2)^2 + \dots$$

New loss function to be minimized

$$L'(\theta) = L(\theta) + \lambda \frac{1}{2} \|\theta\|_2$$
 Gradient: $\frac{\partial L'}{\partial w} = \frac{\partial L}{\partial w} + \lambda w$

Update:
$$w^{t+1} \rightarrow w^t - \eta \frac{\partial L'}{\partial w} = w^t - \eta \left(\frac{\partial L}{\partial w} + \lambda w^t \right)$$

$$= \underbrace{(1 - \eta \lambda)w^t}_{\text{Closer to zero}} - \eta \frac{\partial L}{\partial w} \quad \text{Weight Decay}$$

L1 regularization:

Regularization

$$\|\theta\|_1 = |w_1| + |w_2| + \dots$$

New loss function to be minimized

$$L'(\theta) = L(\theta) + \lambda \frac{1}{2} \|\theta\|_{1} \qquad \frac{\partial L'}{\partial w} = \frac{\partial L}{\partial w} + \lambda \operatorname{sgn}(w)$$
Update:
$$w^{t+1} \to w^{t} - \eta \frac{\partial L'}{\partial w} = w^{t} - \eta \left(\frac{\partial L}{\partial w} + \lambda \operatorname{sgn}(w^{t})\right)$$

$$= w^{t} - \eta \frac{\partial L}{\partial w} - \underline{\eta \lambda \operatorname{sgn}(w^{t})} \qquad \operatorname{Always reduce} \|w\|$$

$$= (1 - \eta \lambda)w^{t} - \eta \frac{\partial L}{\partial w} \qquad \dots \qquad \text{L2}$$

Regularization - Weight Decay

Our brain prunes out the useless link between

neurons.

Doing the same thing to machine's brain improves the performance.

Recipe of Deep Learning YES **Early Stopping** Good Results on **Testing Data?** Regularization YES Dropout Good Results on New activation function **Training Data?** Adaptive Learning Rate

Dropout

Training:

- > Each time before updating the parameters
 - Each neuron has p% to dropout

Dropout

Training:

- > Each time before updating the parameters
 - Each neuron has p% to dropout
 - The structure of the network is changed.
 - Using the new network for training

For each mini-batch, we resample the dropout neurons

Dropout

Testing:

No dropout

- If the dropout rate at training is p%,
 all the weights times 1-p%
- Assume that the dropout rate is 50%. If a weight w = 1 by training, set w = 0.5 for testing.

Dropout - Intuitive Reason

• Why the weights should multiply (1-p%) (dropout rate) when testing?

Training of Dropout

Assume dropout rate is 50%

Testing of Dropout

No dropout

Testing of Dropout

Recipe of Deep Learning

Step 1: define a set of function

Step 2: goodness of function

Step 3: pick the best function

NO

Overfitting!

NO

Neural Network