# Deep Learning Recipe

#### Recipe of Deep Learning



Step 1: define a set of function

Step 2: goodness of function

Step 3: pick the best function

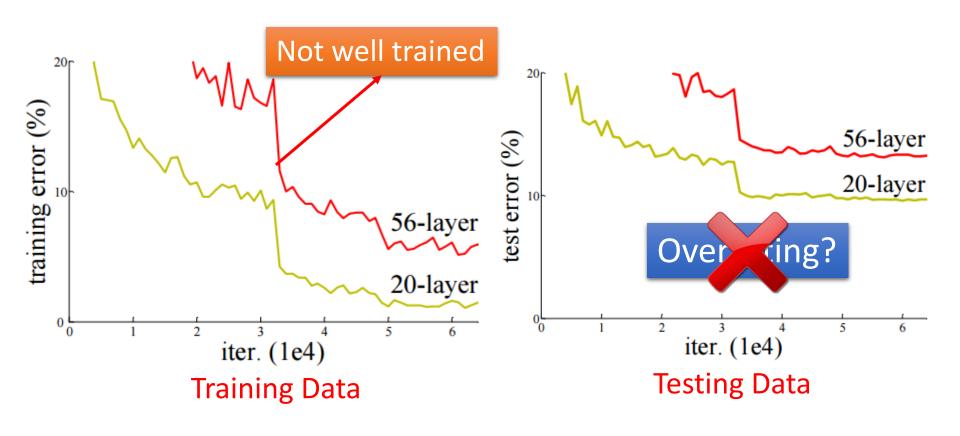
NO

Overfitting!

NO

Neural Network

# Do not always blame Overfitting



Deep Residual Learning for Image Recognition http://arxiv.org/abs/1512.03385

#### Recipe of Deep Learning



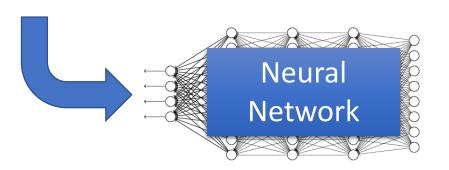
Different approaches for different problems.

e.g. adaptive learning rate for good results on training data e.g. dropout for good results on testing data

Good Results on Testing Data?

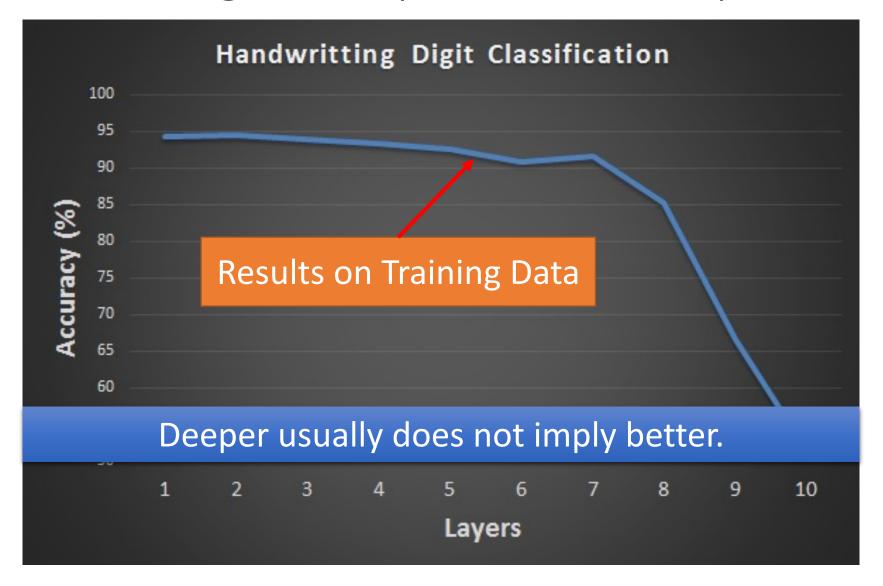


Good Results on Training Data?

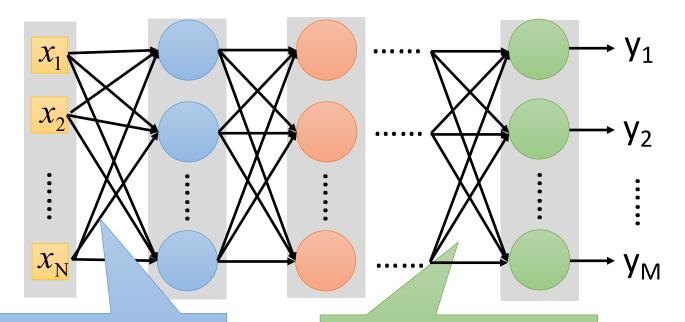


## Recipe of Deep Learning YES **Early Stopping** Good Results on **Testing Data?** Regularization YES Dropout Good Results on New activation function **Training Data?** Adaptive Learning Rate

## Hard to get the power of Deep ...



## Vanishing Gradient Problem



**Smaller gradients** 

Learn very slow

Almost random

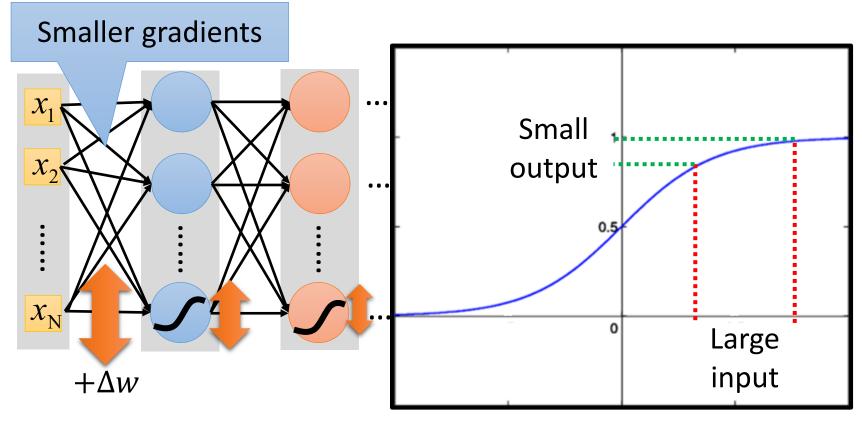
Larger gradients

Learn very fast

Already converge

based on random!?

# Vanishing Gradient Problem

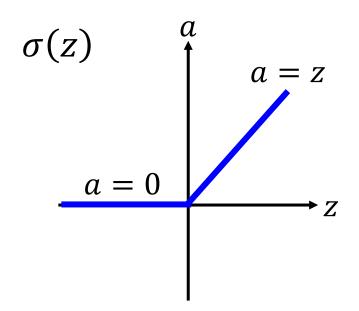


Intuitive way to compute the derivatives ...

$$\frac{\partial C}{\partial w} = ? \frac{\Delta C}{\Delta w}$$

## ReLU

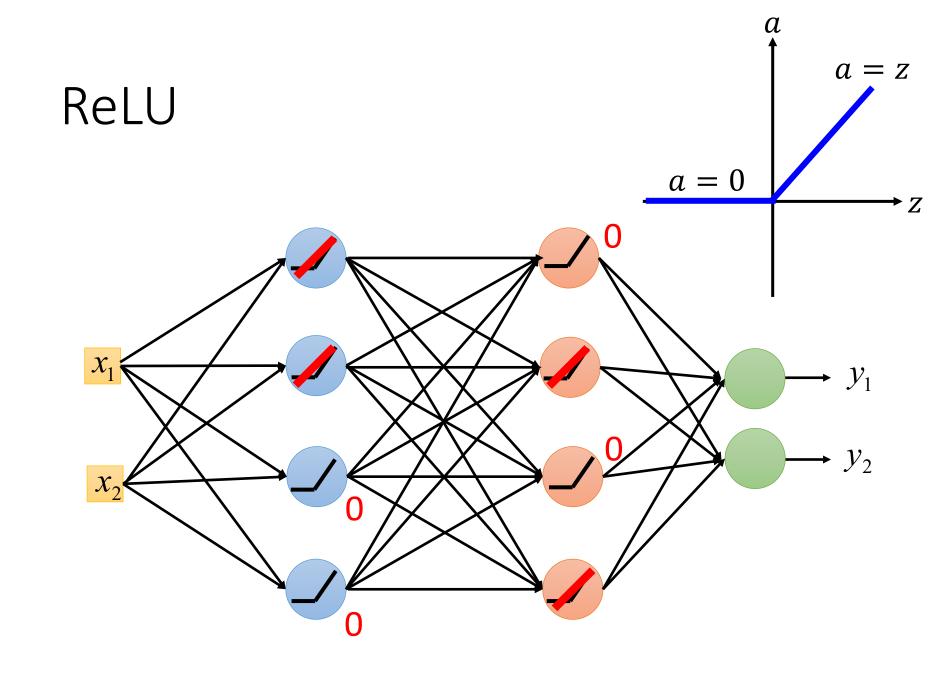
Rectified Linear Unit (ReLU)

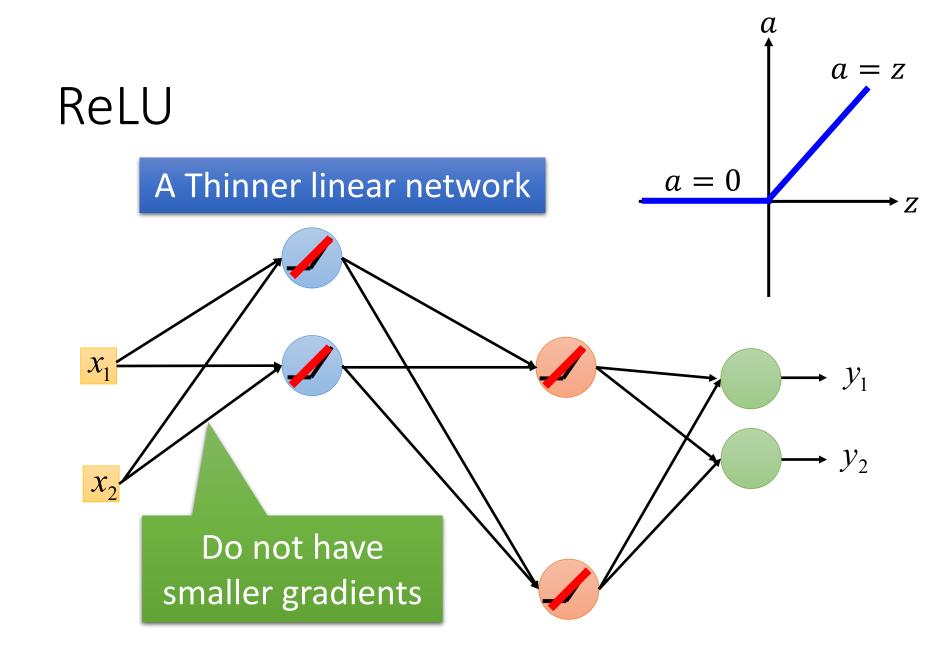


[Xavier Glorot, AISTATS'11] [Andrew L. Maas, ICML'13] [Kaiming He, arXiv'15]

#### Reason:

- 1. Fast to compute
- 2. Biological reason
- 3. Infinite sigmoid with different biases
- 4. Vanishing gradient problem

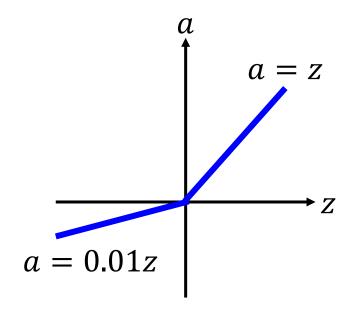




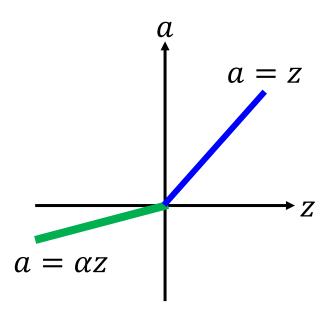
The whole network becomes linear? (We want non-linearity)

## ReLU - variant

#### Leaky ReLU



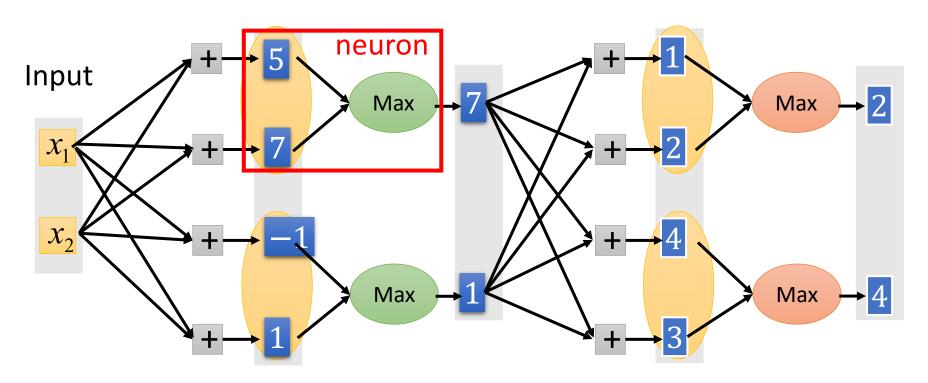
#### Parametric ReLU



α also learned by gradient descent

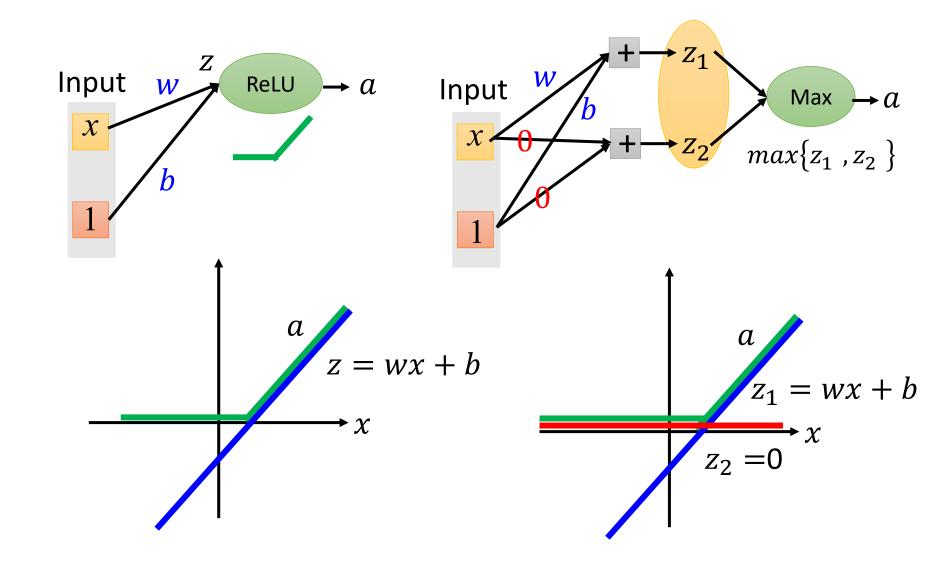
#### ReLU is a special cases of Maxout

• Learnable activation function [lan J. Goodfellow, ICML'13]

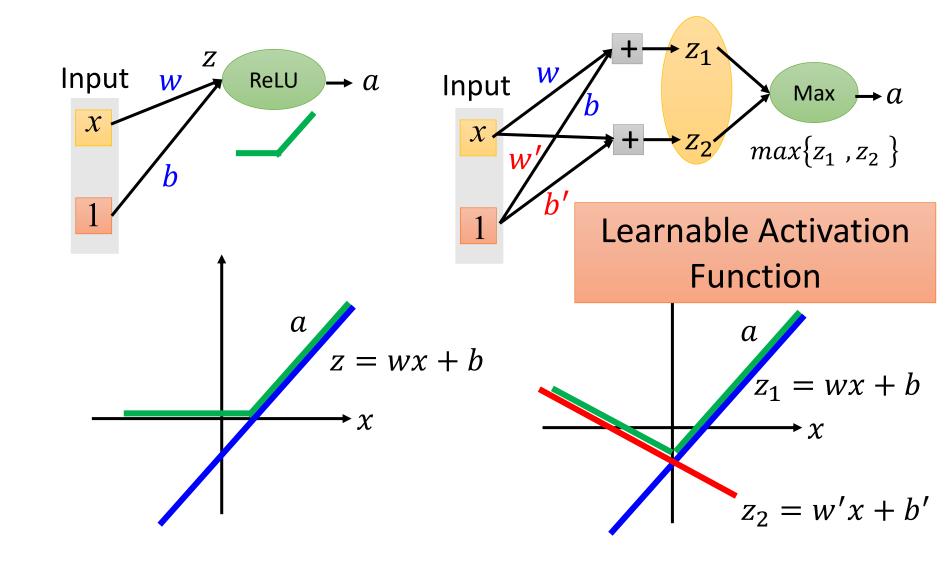


You can have more than 2 elements in a group.

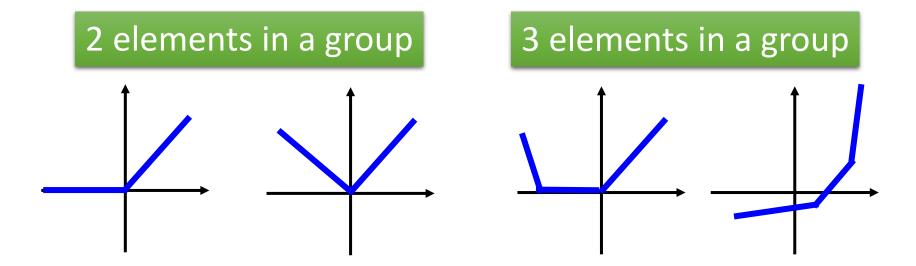
#### ReLU is a special cases of Maxout



#### More than ReLU

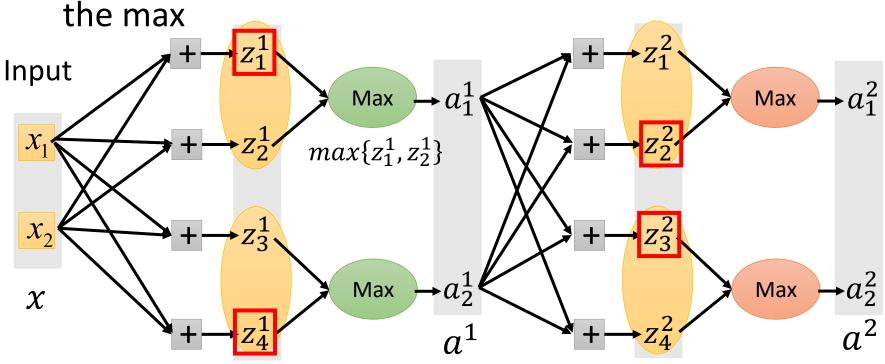


- Learnable activation function [lan J. Goodfellow, ICML'13]
  - Activation function in maxout network can be any piecewise linear convex function
  - How many pieces depending on how many elements in a group



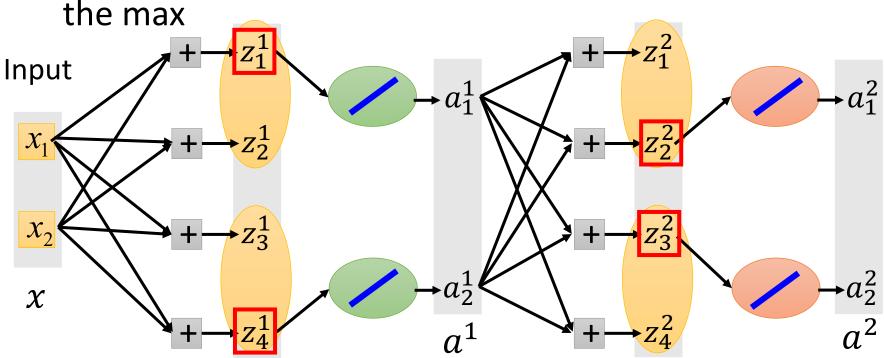
## Maxout - Training

Given a training data x, we know which z would be



## Maxout - Training

Given a training data x, we know which z would be

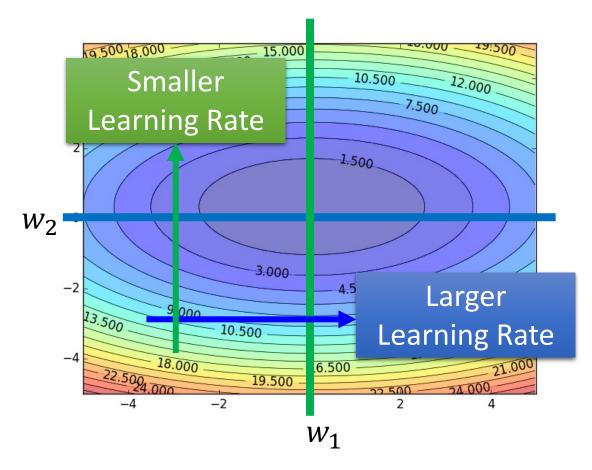


• Train this thin and linear network

Different thin and linear network for different examples

## Recipe of Deep Learning YES **Early Stopping** Good Results on **Testing Data?** Regularization YES Dropout Good Results on New activation function **Training Data?** Adaptive Learning Rate

## Review



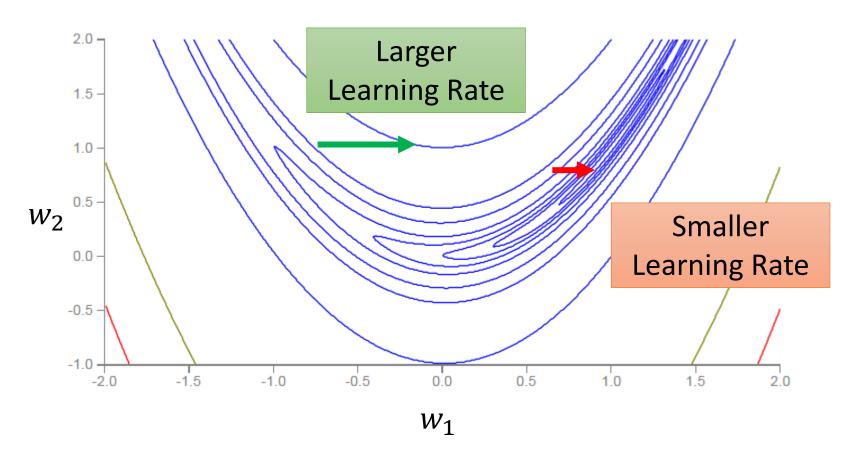
#### **Adagrad**

$$w^{t+1} \leftarrow w^t - \frac{\eta}{\sqrt{\sum_{i=0}^{t} (g^i)^2}} g^t$$

Use first derivative to estimate second derivative

# RMSProp

Error Surface can be very complex when training NN.



# RMSProp

$$w^{1} \leftarrow w^{0} - \frac{\eta}{\sigma^{0}} g^{0} \qquad \sigma^{0} = g^{0}$$

$$w^{2} \leftarrow w^{1} - \frac{\eta}{\sigma^{1}} g^{1} \qquad \sigma^{1} = \sqrt{\alpha(\sigma^{0})^{2} + (1 - \alpha)(g^{1})^{2}}$$

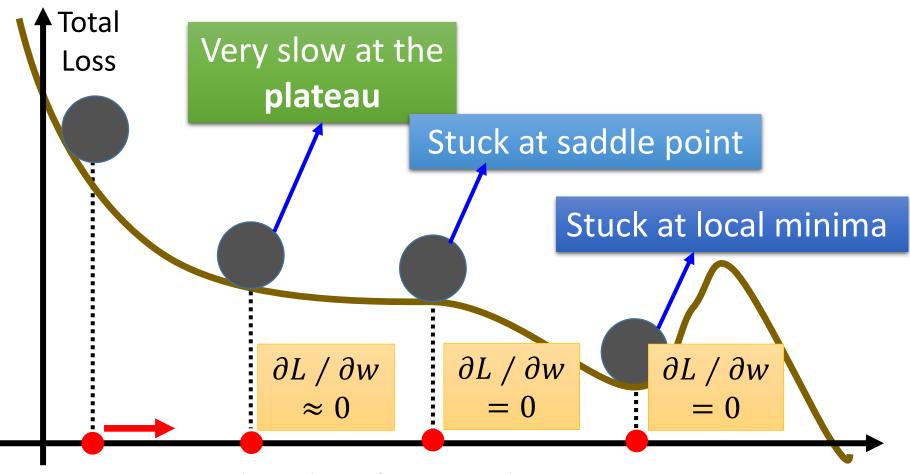
$$w^{3} \leftarrow w^{2} - \frac{\eta}{\sigma^{2}} g^{2} \qquad \sigma^{2} = \sqrt{\alpha(\sigma^{1})^{2} + (1 - \alpha)(g^{2})^{2}}$$

$$\vdots$$

 $w^{t+1} \leftarrow w^t - \frac{\eta}{\sigma^t} g^t$   $\sigma^t = \sqrt{\alpha(\sigma^{t-1})^2 + (1-\alpha)(g^t)^2}$ 

Root Mean Square of the gradients with previous gradients being decayed

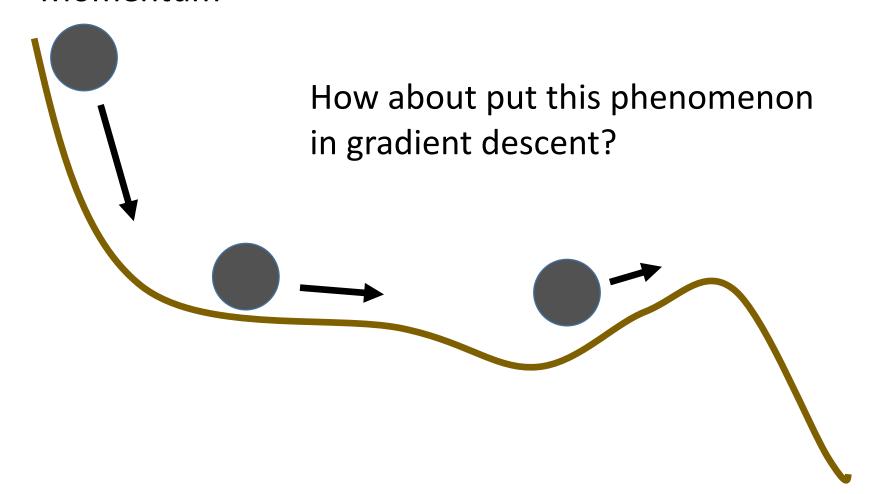
# Hard to find optimal network parameters



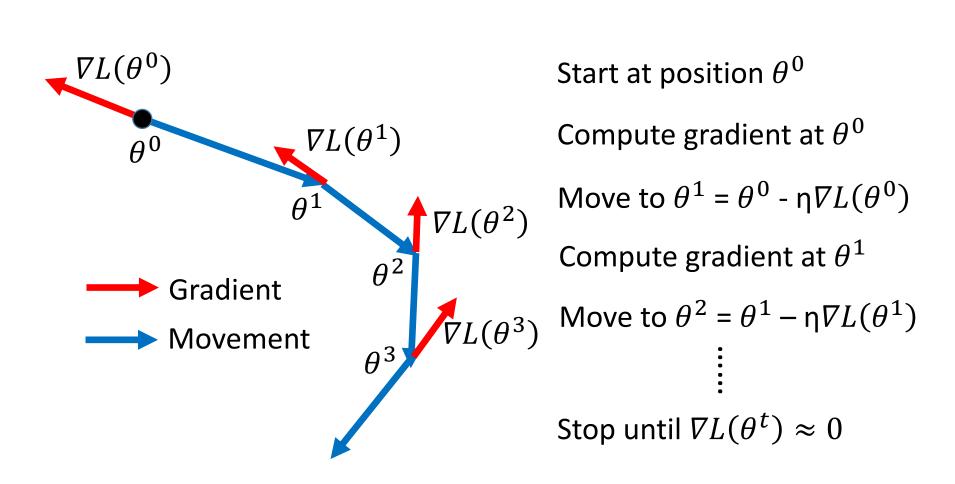
The value of a network parameter w

# In physical world .....

Momentum

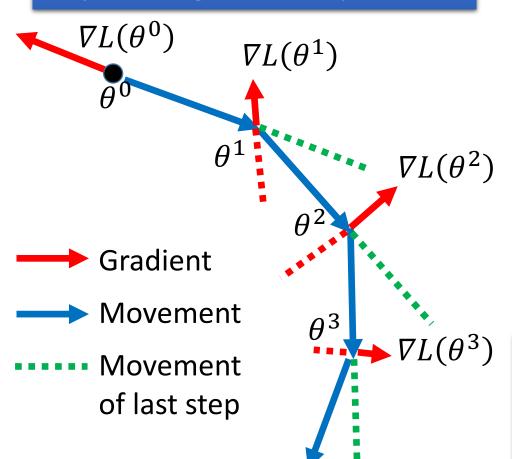


## Review: Vanilla Gradient Descent



## Momentum

Movement: movement of last step minus gradient at present



Start at point  $\theta^0$ 

Movement  $v^0=0$ 

Compute gradient at  $\theta^0$ 

Movement  $v^1 = \lambda v^0 - \eta \nabla L(\theta^0)$ 

Move to  $\theta^1 = \theta^0 + v^1$ 

Compute gradient at  $\theta^1$ 

Movement  $v^2 = \lambda v^1 - \eta \nabla L(\theta^1)$ 

Move to  $\theta^2 = \theta^1 + v^2$ 

Movement not just based on gradient, but previous movement.

## Momentum

Movement: movement of last step minus gradient at present

v<sup>i</sup> is actually the weighted sum of all the previous gradient:

$$\nabla L(\theta^0), \nabla L(\theta^1), \dots \nabla L(\theta^{i-1})$$

$$v^0 = 0$$

$$v^1 = - \eta \nabla L(\theta^0)$$

$$v^2 = -\lambda \, \eta \nabla L(\theta^0) - \eta \nabla L(\theta^1)$$

Start at point  $\theta^0$ 

Movement  $v^0=0$ 

Compute gradient at  $\theta^0$ 

Movement  $v^1 = \lambda v^0 - \eta \nabla L(\theta^0)$ 

Move to  $\theta^1 = \theta^0 + v^1$ 

Compute gradient at  $\theta^1$ 

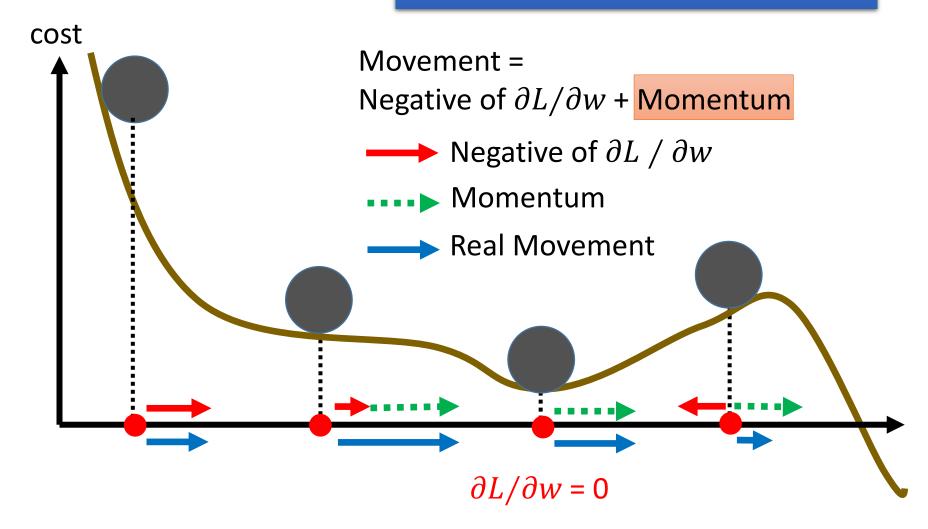
Movement  $v^2 = \lambda v^1 - \eta \nabla L(\theta^1)$ 

Move to  $\theta^2 = \theta^1 + v^2$ 

Movement not just based on gradient, but previous movement

## Momentum

Still not guarantee reaching global minima, but give some hope ......



## Adam

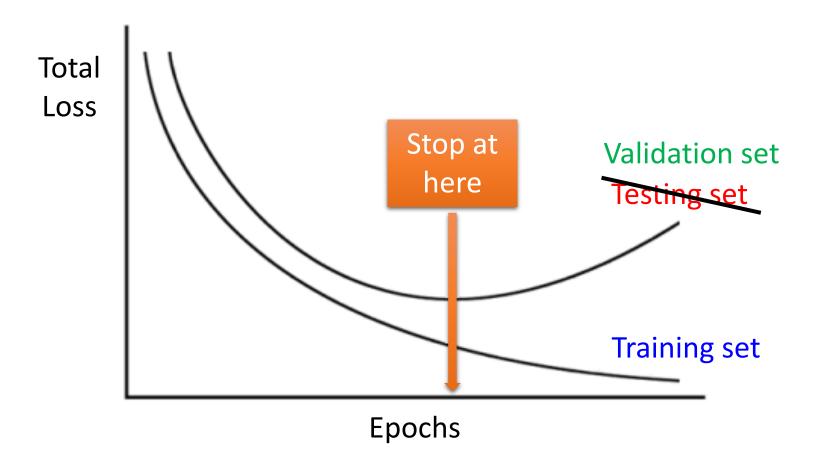
#### RMSProp + Momentum

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation.  $g_t^2$  indicates the elementwise square  $g_t \odot g_t$ . Good default settings for the tested machine learning problems are  $\alpha = 0.001$ ,  $\beta_1 = 0.9$ ,  $\beta_2 = 0.999$  and  $\epsilon = 10^{-8}$ . All operations on vectors are element-wise. With  $\beta_1^t$  and  $\beta_2^t$  we denote  $\beta_1$  and  $\beta_2$  to the power t.

```
Require: \alpha: Stepsize
Require: \beta_1, \beta_2 \in [0, 1): Exponential decay rates for the moment estimates
Require: f(\theta): Stochastic objective function with parameters \theta
Require: \theta_0: Initial parameter vector
   m_0 \leftarrow 0 (Initialize 1st moment vector) \longrightarrow for momentum
   v_0 \leftarrow 0 (Initialize 2<sup>nd</sup> moment vector)
                                                       → for RMSprop
   t \leftarrow 0 (Initialize timestep)
   while \theta_t not converged do
      t \leftarrow t + 1
      g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1}) (Get gradients w.r.t. stochastic objective at timestep t)
      m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t (Update biased first moment estimate)
      v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 (Update biased second raw moment estimate)
      \widehat{m}_t \leftarrow m_t/(1-\beta_1^t) (Compute bias-corrected first moment estimate)
      \hat{v}_t \leftarrow v_t/(1-\beta_2^t) (Compute bias-corrected second raw moment estimate)
      \theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon) (Update parameters)
   end while
   return \theta_t (Resulting parameters)
```

# Recipe of Deep Learning YES **Early Stopping** Good Results on **Testing Data?** Regularization YES Dropout Good Results on New activation function **Training Data?** Adaptive Learning Rate

# Early Stopping



Keras: http://keras.io/getting-started/faq/#how-can-i-interrupt-training-when-the-validation-loss-isnt-decreasing-anymore

# Recipe of Deep Learning YES **Early Stopping** Good Results on **Testing Data?** Regularization YES Dropout Good Results on New activation function **Training Data?** Adaptive Learning Rate

# Regularization

- New loss function to be minimized
  - Find a set of weight not only minimizing original cost but also close to zero

$$L'(\theta) = L(\theta) + \lambda \frac{1}{2} \|\theta\|_{2} \longrightarrow \text{Regularization term}$$
 
$$\theta = \{w_{1}, w_{2}, \ldots\}$$

Original loss (e.g. minimize square error, cross entropy ...)

L2 regularization:

$$\|\theta\|_2 = (w_1)^2 + (w_2)^2 + \dots$$

(usually not consider biases)

# Regularization

#### L2 regularization:

$$\|\theta\|_2 = (w_1)^2 + (w_2)^2 + \dots$$

New loss function to be minimized

$$L'(\theta) = L(\theta) + \lambda \frac{1}{2} \|\theta\|_2$$
 Gradient:  $\frac{\partial L'}{\partial w} = \frac{\partial L}{\partial w} + \lambda w$ 

Update: 
$$w^{t+1} \rightarrow w^t - \eta \frac{\partial L'}{\partial w} = w^t - \eta \left( \frac{\partial L}{\partial w} + \lambda w^t \right)$$

$$= \underbrace{(1 - \eta \lambda)w^t}_{\text{Closer to zero}} - \eta \frac{\partial L}{\partial w} \quad \text{Weight Decay}$$

#### L1 regularization:

# Regularization

$$\|\theta\|_1 = |w_1| + |w_2| + \dots$$

New loss function to be minimized

$$L'(\theta) = L(\theta) + \lambda \frac{1}{2} \|\theta\|_{1} \qquad \frac{\partial L'}{\partial w} = \frac{\partial L}{\partial w} + \lambda \operatorname{sgn}(w)$$
Update:
$$w^{t+1} \to w^{t} - \eta \frac{\partial L'}{\partial w} = w^{t} - \eta \left(\frac{\partial L}{\partial w} + \lambda \operatorname{sgn}(w^{t})\right)$$

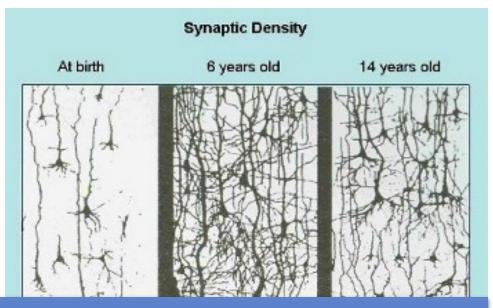
$$= w^{t} - \eta \frac{\partial L}{\partial w} - \underline{\eta \lambda \operatorname{sgn}(w^{t})} \qquad \operatorname{Always reduce} \|w\|$$

$$= (1 - \eta \lambda)w^{t} - \eta \frac{\partial L}{\partial w} \qquad \dots \qquad \text{L2}$$

# Regularization - Weight Decay

Our brain prunes out the useless link between

neurons.



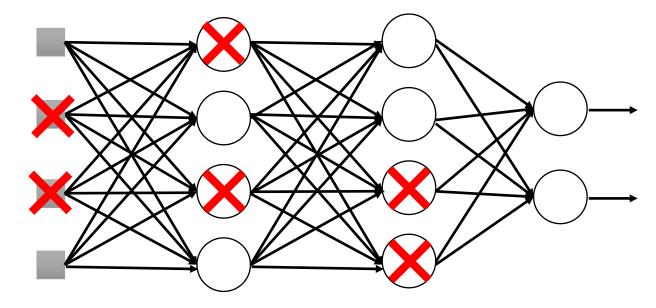
Doing the same thing to machine's brain improves the performance.



# Recipe of Deep Learning YES **Early Stopping** Good Results on **Testing Data?** Regularization YES Dropout Good Results on New activation function **Training Data?** Adaptive Learning Rate

## Dropout

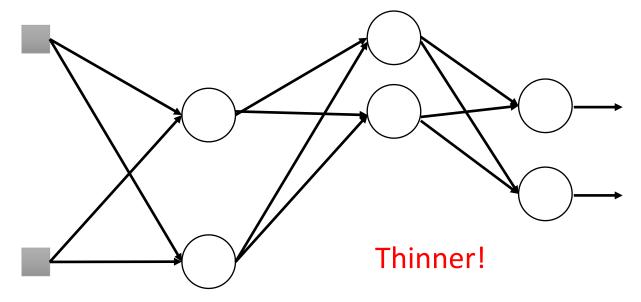
#### **Training:**



- > Each time before updating the parameters
  - Each neuron has p% to dropout

## Dropout

#### **Training:**

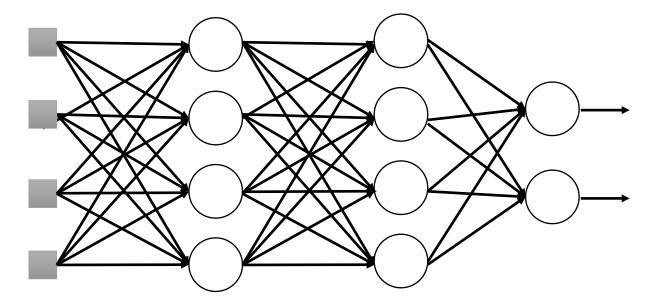


- > Each time before updating the parameters
  - Each neuron has p% to dropout
    - The structure of the network is changed.
  - Using the new network for training

For each mini-batch, we resample the dropout neurons

## Dropout

#### **Testing:**



#### No dropout

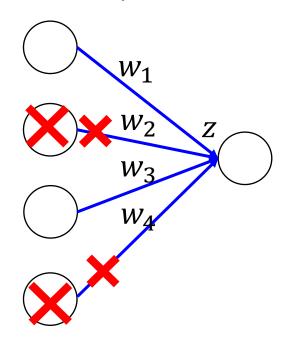
- If the dropout rate at training is p%,
   all the weights times 1-p%
- Assume that the dropout rate is 50%. If a weight w = 1 by training, set w = 0.5 for testing.

## Dropout - Intuitive Reason

• Why the weights should multiply (1-p%) (dropout rate) when testing?

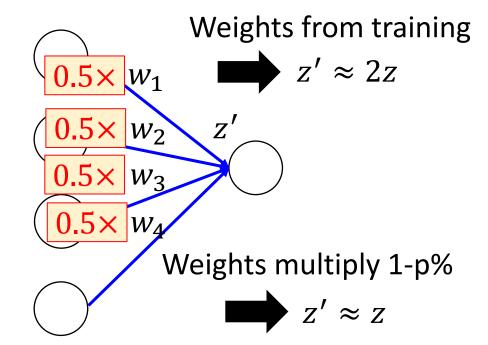
#### **Training of Dropout**

Assume dropout rate is 50%

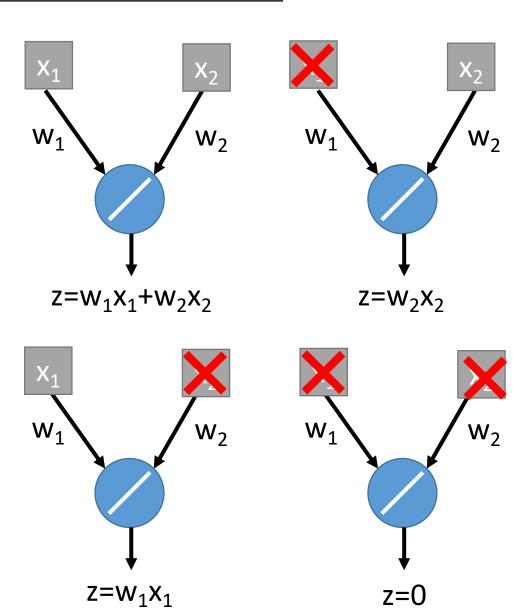


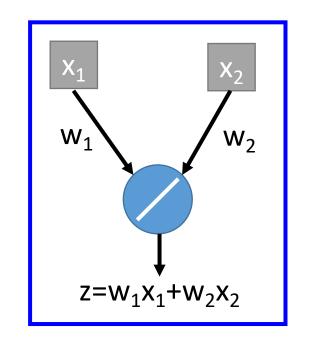
#### **Testing of Dropout**

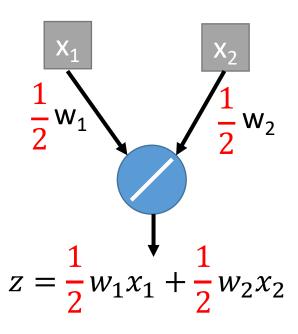
No dropout



#### **Testing of Dropout**







#### Recipe of Deep Learning



Step 1: define a set of function

Step 2: goodness of function

Step 3: pick the best function

NO

Overfitting!

NO

Neural Network