
Linear	Classification:
The	Perceptron
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Linear	Classifiers
• A	hyperplane partitions									into	two	half-spaces

– Defined	by	the	normal	vector
• is	orthogonal	to	any	vector	lying	
on	the	hyperplane

– Assumed	to	pass	through	the	origin
• This	is	because	we	incorporated	bias	term								into	it	by

• Consider	classification	with	+1,	-1	labels	...	
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Linear	Classifiers
• Linear	classifiers:	represent	decision	boundary	by	hyperplane

– Note	that:	
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• The	perceptron	uses	the	following	update	rule	each	
time	it	receives	a	new	training	instance

– If	the	prediction	matches	the	label,	make	no	change
– Otherwise,	adjust	θ
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The	Perceptron
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• The	perceptron	uses	the	following	update	rule	each	
time	it	receives	a	new	training	instance

• Re-write	as																																										(only	upon	misclassification)

– Can	eliminate	α in	this	case,	since	its	only	effect	is	to	scale	θ
by	a	constant,	which	doesn’t	affect	performance

The	Perceptron
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Why	the	Perceptron	Update	Works
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Why	the	Perceptron	Update	Works
• Consider	the	misclassified	example	(y =	+1)
– Perceptron	wrongly	thinks	that	

• Update:

• Note	that

• Therefore,																is	less	negative	than
– So,	we	are	making	ourselves	more	correct on	this	example!
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The	Perceptron	Cost	Function
• The	perceptron	uses	the	following	cost	function

– is	0	if	the	prediction	is	correct
– Otherwise,	it	is	the	confidence	in	the	misprediction
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Online	Perceptron	Algorithm
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1.) Let ✓  [0, 0, . . . , 0]
2.) Repeat:

3.) Receive training example (x

(i), y(i))
4.) if y(i)x(i)

✓  0 // prediction is incorrect

5.) ✓  ✓ + y(i)x(i)

Online	learning	– the	learning	mode	where	the	model	update	is	
performed	each	time	a	single	observation	is	received

Batch	learning	– the	learning	mode	where	the	model	update	is	
performed	after	observing	the	entire	training	set



Online	Perceptron	Algorithm
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Red	points	are	
labeled	+

Blue	points	are	
labeled	-



Batch	Perceptron
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1.) Given training data

�
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2.) Let ✓  [0, 0, . . . , 0]
2.) Repeat:

2.) Let � [0, 0, . . . , 0]
3.) for i = 1 . . . n, do
4.) if y(i)x(i)

✓  0 // prediction for i

th
instance is incorrect

5.) � �+ y(i)x(i)

6.) � �/n // compute average update

6.) ✓  ✓ + ↵�
8.) Until k�k2 < ✏

• Simplest	case:		α	=	1	and	don’t	normalize,	yields	the	fixed	
increment	perceptron

• Guaranteed	to	find	a	separating	hyperplane if	one	exists
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Improving	the	Perceptron
• The	Perceptron	produces	many	θ‘s during	training
• The	standard	Perceptron	simply	uses	the	final	θ at	test	time

– This	may	sometimes	not	be	a	good	idea!
– Some	other	θmay	be	correct	on	1,000	consecutive	examples,	
but	one	mistake	ruins	it!

• Idea:	Use	a	combination	of	multiple	perceptrons
– (i.e.,	neural	networks!)

• Idea:	Use	the	intermediate	θ‘s
– Voted	Perceptron:	vote	on	predictions	of	the	intermediate	θ‘s
– Averaged	Perceptron:	average	the	intermediate	θ‘s
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